skip to main content


3 results for: All records
Author ORCID ID is 0000000288903225
Full Text and Citations
  1. Here, the combustion-residual backflow into the intake ports of a commercial diesel engine (Cummins ISX series) was spatiotemporally mapped using a multiplexed multi-species absorption spectroscopy sensor system; the resulting cycle- and cylinder-resolved measurements are applicable for assessing cylinder charge uniformity, control strategies, and computational fluid dynamics tools. On-engine measurements were made using four compact (3/8 in Outside Diameter) stainless steel probes which enabled simultaneous multi-point measurements, required minimal engine hardware modification, and featured a novel tip design for measurement of gas flows parallel to the probe axis. Three sensor probes were used to perform simultaneous backflow measurements in intake runnersmore » corresponding to three of the six engine cylinders, and a fourth probe was installed in the intake manifold plenum for tracking dynamics introduced by an external exhaust gas recirculation mixer. Near-crank-angle resolved measurements (5 kHz, that is, 1.2 crank angle resolution at 1000 RPM) were performed during steady-state engine operation at various levels of external exhaust gas recirculation to measure the gas properties and penetration distance of the backflow into the intake runners on a cylinder- and cycle-basis. Validation of computational fluid dynamics model results is also presented to demonstrate the utility of such measurements in advancing engine research.« less
  2. This work explores the dependence of fuel distillation and flame speed on low-speed pre-ignition (LSPI). Findings are based on cylinder pressure analysis, as well as the number count, clustering, intensity, duration, and onset crank angle of LSPI events. Four fuels were used, with three of the fuels being blends with gasoline, and the fourth being neat gasoline. The blended fuels consisted of single molecules of different molecular types: a ketone (cyclopentanone), an alcohol (2-methyl-1-butanol), and an aromatic (ethylbenzene). All three pure molecules have RON values within ±2 and boiling points within ±5 °C. These fuels were blended with gasoline tomore » a 25% mass fraction and were used to run the engine at identical LSPI prone operating conditions. The findings highlight that fuels with similar boiling properties and octane numbers can exhibit similar LSPI number counts, but with vastly different LSPI magnitudes and intensities. Moreover, the results highlight fundamental fuel properties such as flame speed are critical to characterizing the LSPI propensity and behavior of the fuel.« less
  3. We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.