skip to main content


2 results for: All records
Author ORCID ID is 0000000284846163
Full Text and Citations
  1. First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less
    Cited by 1
  2. As research activities continue, our understanding of biomass pyrolysis has been significantly elevated and we sought to arrange this Virtual Special Issue (VSI) in ACS Sustainable Chemistry & Engineering to report recent progress on computational and experimental studies of biomass pyrolysis. Beyond highlighting the five national laboratories' advancements, prestigious researchers in the field of biomass pyrolysis have been invited to report their most recent activities.

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.