skip to main content

DOE PAGESDOE PAGES

1 results for: All records
Author ORCID ID is 0000000282520194
Full Text and Citations
Filters
  1. Biomass pyrolysis to produce biofuel and hydrogen yields large amounts of charred byproducts with low commercial value. A study was conducted to evaluate their potential for being converted into higher value activated carbons by a low-cost process. Six chars derived from various lignocellulosic precursors were activated in CO 2 at 800 °C to 30–35% weight loss, and their surface area and porosity were characterized by nitrogen adsorption at 77 K. It was found that, in similar activation conditions, the surface area of the activated carbons correlates with the activation energy of the oxidation reaction by CO 2, which in turnmore » varies inversely with the carbon yield after thermolysis in nitrogen at 1000 °C. Since lignin is the most thermally-stable component of lignocellulosic biomass, these results demonstrate, indirectly, that robust, lignin-rich vegetal precursors are to be preferred to produce higher quality activated carbons. The chars derived from white pine (pinus strobus) and chestnut oak (quercus prinus) were converted to activated carbons with the highest surface area (900–1100 m 2/g) and largest mesopores volume (0.85–1.06 cm 3/g). These activated carbons have properties similar to those of commercially-available activated carbons used successfully for removal of pollutants from aqueous solutions.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.