skip to main content


3 results for: All records
Author ORCID ID is 0000000278479336
Full Text and Citations
  1. Full field transmission X-ray microscope (TXM) is a powerful technique for non-destructive 3D imaging with nanometer-scale spatial resolution. However, to date, the typical acquisition time with the hard X-ray TXM at a synchrotron facility is > 10 minutes for a 3D nano-tomography data set with sub-50 nm spatial resolution. This is a significant limit on the types of 3D dynamics that can be investigated using this technique. Here, we present a demonstration of one-minute nano-tomography with sub-50 nm spatial resolution. This achievement is made possible with an in-house designed and commissioned TXM instrument at the Full-field X-ray Imaging (FXI) beamlinemore » at the National Synchrotron Light Source-II (NSLS-II) at Brookhaven National Laboratory. This capability represents an order of magnitude decrease in the time required for studying sample dynamics with 10s of nm spatial resolution.« less
  2. In this study, we have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.