skip to main content

DOE PAGESDOE PAGES

2 results for: All records
Author ORCID ID is 0000000260094438
Full Text and Citations
Filters
  1. We report that predictive modeling of materials requires accurately parameterized constitutive models. Parameterizing models that describe dynamic strength and plasticity require experimentally probing materials in a variety of strain rate regimes. Some experimental protocols (e.g., plate impact) probe the constitutive response of a material using indirect measures such as free surface velocimetry. Manual efforts to parameterize constitutive models using indirect experimental measures often lead to non-unique optimizations without quantification of parameter uncertainty. This study uses a Bayesian statistical approach to find model parameters and to quantify the uncertainty of the resulting parameters. The technique is demonstrated by parameterizing the Johnson-Cookmore » strength model for aluminum alloy 5083 by coupling hydrocode simulations and velocimetry measurements of a series of plate impact experiments. Simulation inputs and outputs are used to calibrate an emulator that mimics the outputs of the computationally intensive simulations. Varying the amount of experimental data available for emulator calibration showed clear differences in the degree of uncertainty and uniqueness of the resulting optimized Johnson-Cook parameters for Al-5083. The results of the optimization provided a numerical evaluation of the degree of confidence in model parameters and model performance. Lastly, given an understanding of the physical effects of certain model parameters, individual parameter uncertainty can be leveraged to quickly identify gaps in the physical domains covered by completed experiments.« less
  2. In human motion studies, discrete points such as peak or average kinematic values are commonly selected to test hypotheses. The purpose of this study was to describe a functional data analysis and describe the advantages of using functional data analyses when compared with a traditional analysis of variance (ANOVA) approach. Nineteen healthy participants (age: 22 ± 2 yrs, body height: 1.7 ± 0.1 m, body mass: 73 ± 16 kg) walked under two different conditions: control and pain+effusion. Pain+effusion was induced by injection of sterile saline into the joint capsule and hypertonic saline into the infrapatellar fat pad. Sagittal-plane ankle,more » knee, and hip joint kinematics were recorded and compared following injections using 2×2 mixed model ANOVAs and FANOVAs. The results of ANOVAs detected a condition × time interaction for the peak ankle (F1,18 = 8.56, p = 0.01) and hip joint angle (F1,18 = 5.77, p = 0.03), but did not for the knee joint angle (F1,18 = 0.36, p = 0.56). The functional data analysis, however, found several differences at initial contact (ankle and knee joint), in the mid-stance (each joint) and at toe off (ankle). Although a traditional ANOVA is often appropriate for discrete or summary data, in biomechanical applications, the functional data analysis could be a beneficial alternative. Thus when using the functional data analysis approach, a researcher can (1) evaluate the entire data as a function, and (2) detect the location and magnitude of differences within the evaluated function.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.