skip to main content

DOE PAGESDOE PAGES

5 results for: All records
Author ORCID ID is 0000000240284250
Full Text and Citations
Filters
  1. We report here a general chemical approach to synthesize strongly ferromagnetic rare-earth metal (REM) based SmCo and SmFeN nanoparticles (NPs) with ultra-large coercivity. The synthesis started with the preparation of hexagonal CoO+Sm 2O 3 (denoted as SmCo-O) multipods via decomposition of Sm(acac) 3 and Co(acac) 3 in oleylamine. These multipods were further reduced with Ca at 850 °C to form SmCo 5 NPs with sizes tunable from 50 to 200 nm. The 200 nm SmCo 5 NPs were dispersed in ethanol, and magnetically aligned in polyethylene glycol (PEG) matrix, yielding a PEG-SmCo 5 NP composite with the room temperature coercivitymore » (H c) of 49.2 kOe, the largest H c among all ferromagnetic NPs ever reported, and saturated magnetic moment (M s) of 88.7 emu g -1, the highest value reported for SmCo 5 NPs. The method was extended to synthesize other ferromagnetic NPs of Sm 2Co 17, and, for the first time, of Sm 2Fe 17N 3 NPs with H c over 15 kOe and M s reaching 127.9 emu g -1. These REM based NPs are important magnetic building blocks for fabrication of high-performance permanent magnets, flexible magnets, and printable magnetic inks for energy and sensing applications.« less
  2. We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L1 0-MPt alloy nanoparticle (NP) structure and how to surround the L1 0-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L1 0-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Ptmore » shell, especially the 2 atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO 4 solution (both at room temperature and 60°C) and in the membrane electrode assembly (MEA) at 80°C. The L1 0-FePt/Pt catalyst has a mass activity of 0.7 A/mg Pt from the half-cell ORR test and shows no obvious mass activity loss after 30,000 potential cycles between 0.6 V and 0.95 V at 80°C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). Here, we are extending the concept and preparing other L1 0-MPt/Pt NPs, such as L1 0-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.« less
    Cited by 15Full Text Available
  3. Stabilizing a 3d-transition metal component M from an MPd alloy structure in an acidic environment is key to the enhancement of MPd catalysis for various reactions. Here we show a strategy to stabilize Cu in 5 nm CuPd nanoparticles (NPs) by coupling the CuPd NPs with perovskite-type WO 2.72 nanorods (NRs). The CuPd NPs are prepared by controlled diffusion of Cu into Pd NPs and the coupled CuPd/WO 2.72 are synthesized by growing WO 2.72 NRs in the presence of CuPd NPs. The CuPd/WO 2.72 can stabilize Cu in 0.1 M HClO4 solution and, as a result, they show Cu,more » Pd composition dependent activity for the electrochemical oxidation of formic acid in 0.1 M HClO 4 + 0.1 M HCOOH. Among three different CuPd/WO 2.72 studied, the Cu 48Pd 52/WO 2.72 is the most efficient catalyst with its mass activity reaching 2086 mA/mgPd in a broad potential range of 0.40 to 0.80 V (vs. RHE) and staying at this value after the 12 h chronoamperometry test at 0.40 V. The synthesis can be extended to obtain other MPd/WO 2.72 (M = Fe, Co, Ni), making it possible to study MPd-WO 2.72 interactions and MPd stabilization on enhancing MPd catalysis for various chemical reactions.« less
  4. In this paper, we report a new strategy for stabilizing Fe nanoparticles (NPs) in the preparation of SmCo 5–Fe nanocomposites. We coat the presynthesized Fe NPs with SiO 2 and assemble the Fe/SiO 2 NPs with Sm–Co–OH to form a mixture. After reductive annealing at 850 °C in the presence of Ca, we obtain SmCo 5–Fe/SiO 2 composites. Following aqueous NaOH washing and compaction, we produced exchange-coupled SmCo 5–Fe nanocomposites with Fe NPs controlled at 12 nm. In conclusion, our work demonstrates a successful strategy of stabilizing high moment magnetic NPs in a hard magnetic matrix to produce a nanocompositemore » with tunable magnetic properties.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.