skip to main content


5 results for: All records
Author ORCID ID is 0000000239958254
Full Text and Citations
  1. Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less
  2. Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less
  3. Here in this computational study, we model the mixing of biomass pyrolysis vapor with solid catalyst in circulating riser reactors with a focus on the determination of solid catalyst residence time distributions (RTDs). A comprehensive set of 2D and 3D simulations were conducted for a pilot-scale riser using the Eulerian-Eulerian two-fluid modeling framework with and without sub-grid-scale models for the gas-solids interaction. A validation test case was also simulated and compared to experiments, showing agreement in the pressure gradient and RTD mean and spread. For simulation cases, it was found that for accurate RTD prediction, the Johnson and Jackson partialmore » slip solids boundary condition was required for all models and a sub-grid model is useful so that ultra high resolutions grids that are very computationally intensive are not required. Finally, we discovered a 2/3 scaling relation for the RTD mean and spread when comparing resolved 2D simulations to validated unresolved 3D sub-grid-scale model simulations.« less
  4. Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2 °C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefitsmore » and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy production. In comparison to fossil fuels, biofuels have many positive environmental benefits. Potential negative effects caused by land-use change and agriculture intensification can be mitigated by agroecological zoning, best management practices, the use of eco-hydrology and biodiversity-friendly concepts at field, watershed and landscape scales. Global climate and environmental changes related to the use of fossil fuels and inequitable development make it unethical not to pursue more equitable energy development that includes bioenergy. Here, to achieve sustainable development, competitiveness and costs of bioenergy production need to be addressed in a manner that considers not only economic gains but also development of local knowledge and social and environmental benefits.« less
  5. Here, wsing the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree ofmore » chemical cracking as controlled by the catalyst activity. Lastly, because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.