skip to main content


3 results for: All records
Author ORCID ID is 0000000235818211
Full Text and Citations
  1. Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here in this study, we demonstrate that in the model C 4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and inmore » all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Lastly, enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.« less
    Cited by 12Full Text Available
  2. C 4 photosynthesis is used by only three percent of all flowering plants, but explains a quarter of global primary production, including some of the worlds’ most important cereals and bioenergy grasses. Recent advances in our understanding of C 4 development can be attributed to the application of comparative transcriptomics approaches that has been fueled by high throughput sequencing. Global surveys of gene expression conducted between different developmental stages or on phylogenetically closely related C 3 and C 4 species are providing new insights into C 4 function, development and evolution. Importantly, through co-expression analysis and comparative genomics, these studiesmore » help define novel candidate genes that transcend traditional genetic screens. In this review, we briefly summarize the major findings from recent transcriptomic studies, compare and contrast these studies to summarize emerging consensus, and suggest new approaches to exploit the data. Lastly, we suggest using Setaria viridis as a model system to relieve a major bottleneck in genetic studies of C 4 photosynthesis, and discuss the challenges and new opportunities for future comparative transcriptomic studies.« less
  3. C 4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO 2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localizedmalate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the lossmore » of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ;25% of the photosynthetic activity. The results emphasize the importance of malate transport during C 4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.