skip to main content


18 results for: All records
Author ORCID ID is 0000000232219467
Full Text and Citations
  1. Abstract The atmospheric component of Energy Exascale Earth System Model (E3SM) version 1 (EAMv1) has included many new features in the physics parameterizations compared to its predecessors. Potential complex nonlinear interactions among the new features create a significant challenge for understanding the model behaviors and parameter tuning. Using the one-at-a-time method, the benefit of tuning one parameter may offset the benefit of tuning another parameter, or improvement in one target variable may lead to degradation in another target variable. To better understand the EAMv1 model behaviors and physics, we conducted a large number of short simulations (3 days) in whichmore » 18 parameters carefully selected from parameterizations of deep convection, shallow convection and cloud macrophysics and microphysics were perturbed simultaneously using the Latin Hypercube sampling method. From the Perturbed Parameters Ensemble (PPE) simulations and use of different skill score functions, we identified the most sensitive parameters, quantified how the model responds to changes of the parameters for both global mean and spatial distribution, and estimated the maximum likelihood of model parameter space for a number of important fidelity metrics. Comparison of the parametric sensitivity using simulations of two different lengths suggests that PPE using short simulations has some bearing on understanding parametric sensitivity of longer simulations. Results from this analysis provide a more comprehensive picture of the EAMv1 behavior. Furthermore, the difficulty in reducing biases in multiple variables simultaneously highlights the need of characterizing model structural uncertainty (so-called embedded errors) to inform future development efforts.« less
  2. Sediment yield (SY) plays an important role in the global carbon cycle for carrying particulate carbon into rivers and oceans, but it is rarely represented in Earth system models (ESMs). Existing SY models have mostly been tested over a few small catchments in specific regions or in large river basins globally. By comparing the performance of eight well–known SY models in 454 small catchments with various land covers and uses across the United States, Canada, Puerto Rico, U.S. Virgin Islands, and Guam, we identified the simple Morgan model for its better performance in representing the spatial variability of continental scalemore » SY at spatial scales relevant to ESMs (several to hundreds of square kilometers) than other models because of a more realistic representation of runoff–driven erosion and sediment transport capacity in the context of current data availability. The results also indicated that runoff–driven erosion should be formulated using a power function of runoff, shear stress, or stream power to better represent the total effect of concentrated flow if gully erosion and channel erosion are not explicitly modeled. We also demonstrated that the Morgan model can be further improved by removing snowmelt–driven runoff in modeling runoff–driven erosion and to a minor degree by integrating a landslide model. The improved Morgan model explains 57% of the spatial variability of the measured SY. In conclusion, the new model also demonstrated the capability to simulate SY in cross–validation catchments at fine temporal scales, which is important for coupling SY with other biogeochemistry processes in ESMs.« less
  3. Here, we show that 21st century increase in radiative forcing does not significantly impact the frequency of South Asian summer monsoon depressions (MDs) or their trajectories in the Coupled Model Intercomparison Project Phase 5 general circulation models (GCMs). A significant relationship exists between the climatological occurrences of MDs and the strength of the background upper (lower) tropospheric meridional (zonal) winds and tropospheric moisture in the core genesis region of MDs. Likewise, there is a strong relationship between the strength of the meridional tropospheric temperature gradient in the GCMs and the trajectories of MDs over land. While monsoon dynamics progressively weakensmore » in the future, atmospheric moisture exhibits a strong increase, limiting the impact of changes in dynamics on the frequency of MDs. Moreover, the weakening of meridional tropospheric temperature gradient in the future is substantially weaker than its inherent underestimation in the GCMs. Our results also indicate that future increases in the extreme wet events are dominated by nondepression day occurrences, which may render the monsoon extremes less predictable in the future.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.