skip to main content


3 results for: All records
Author ORCID ID is 0000000211373924
Full Text and Citations
  1. Forsterite (Mg 2SiO 4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate–impact steady shocks and laser–driven decaying shock compression experiments. Additionally, we performed density functional theory–based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg 2SiO 4 and an assemblage of solid MgO plus liquid magnesium silicate. In conclusion, the measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electricalmore » conductor at low pressures and that the conductivity increases with pressure.« less
  2. QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at« less
    Cited by 6

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.