skip to main content


9 results for: All records
Author ORCID ID is 0000000205970976
Full Text and Citations
  1. An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.
  2. A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less
  3. Cited by 15Full Text Available
  4. Cited by 11Full Text Available

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.