skip to main content

DOE PAGESDOE PAGES

12 results for: All records
Author ORCID ID is 0000000198467140
Full Text and Citations
Filters
  1. Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less
    Cited by 1
  2. Biological routes to the production of fuels from renewable feedstocks hold significant promise in our efforts towards a sustainable future. The fatty acid decarboxylase enzyme (OleT JE) is a cytochrome P450 enzyme that converts long and medium chain fatty acids to terminal alkenes and shares significant similarities in terms of structure, substrate scope and mechanism with the hydroxylase cytochrome P450 (P450 BSβ). Recent reports have demonstrated that catalytic pathways in these enzymes bifurcate when the heme is in its iron-hydroxo (compound II) state. In spite of significant similarities, the fundamental underpinnings of their different characteristic wild-type reactivities remain ambiguous. Inmore » this work, we develop point charges, modified parameters and report molecular simulations of this crucial intermediate step. Water occupancies and substrate mobility at the active site are observed to be vital differentiating aspects between the two enzymes in the compound II state and corroborate recent experimental hypotheses. Apart from increased substrate mobility in the hydroxylase, which could have implications for enabling the rebound mechanism for hydroxylation, OleT JE is characterized by much stronger binding of the substrate carboxylate group to the active site arginine, implicating it as an important enabling actor for decarboxylation.« less
  3. Small esters represent an important class of high octane biofuels for advanced spark ignition engines. They qualify for stringent fuel screening standards and could be synthesized through various pathways. In this work, we performed a detailed investigation of the combustion of two small esters, MA (methyl acetate) and EA (ethyl acetate), including quantum chemistry calculations, experimental studies of combustion characteristics and kinetic model development. The quantum chemistry calculations were performed to obtain rates for H-atom abstraction reactions involved in the oxidation chemistry of these fuels. The series of experiments include: a shock tube study to measure ignition delays at 15more » and 30 bar, 1000-1450 K and equivalence ratios of 0.5, 1.0 and 2.0; laminar burning velocity measurements in a heat flux burner over a range of equivalence ratios [0.7-1.4] at atmospheric pressure and temperatures of 298 and 338 K; and speciation measurements during oxidation in a jet-stirred reactor at 800-1100 K for MA and 650-1000 K for EA at equivalence ratios of 0.5, 1.0 and at atmospheric pressure. The developed chemical kinetic mechanism for MA and EA incorporates reaction rates and pathways from recent studies along with rates calculated in this work. The new mechanism shows generally good agreement in predicting experimental data across the broad range of experimental conditions. The experimental data, along with the developed kinetic model, provides a solid groundwork towards improving the understanding the combustion chemistry of smaller esters.« less
  4. The formation of soot precursors during combustion of three positional isomers of methylcyclohexene was investigated in flow reactor experiments and through density functional theory simulations. As evidenced by a recently published structure-property model, the sooting tendencies of these compounds differ from those of structurally similar molecules - suggesting new or unusual reaction chemistry. It was demonstrated that 1-methyl-1-cyclohexene and 4-methyl-1-cyclohexene preferentially react via a retro-Diels-Alder pathway leading to ring opening and molecular weight reduction. 3-methyl-1-cyclohexene, which exhibits much higher yield sooting index, preferentially reacts via dehydrogenation to cyclohexadienes and toluene - consistent with higher soot formation. It was demonstrated thatmore » the relative stability of the first radical intermediate plays a considerable role in determining the branching ratio between formation of soot precursors and ring opened retro-Diels-Alder reaction products. This study underscores the importance that small structural features can have in determining the ultimate fate of carbon during combustion processes.« less
  5. This study characterized the sooting tendencies of a set of gasolines and their surrogates using both experimental and computational methods. Sooting tendency was defined in terms of the soot yield when 1000 ppm of the test fuel is doped into the fuel of a methane/air flame, and it provides a measure of the intrinsic chemical tendency of the fuels to form soot in a generic combustion environment. The test fuels were real gasolines containing enhanced concentrations of alkanes, aromatics, cycloalkanes, olefins, and ethanol. These compositional differences caused the experimentally measured sooting tendencies of the fuels to vary by 240%. Themore » surrogates were 3 mixtures defined by Szybist et al. (2017) and 3 alternative formulations modified for greater experimental convenience. The sooting tendencies measured for the surrogate mixtures agreed with the real fuels to within 15%, and varied with composition in the same order. The sooting tendencies of the surrogates could be predicted to within experimental error with an empirical quantitative structure-property relationship and a linear mixing model. The experimental flames were computationally simulated with a 743-species mechanism, and sooting tendencies derived from the results agreed with the measured values to within 11%. Altogether, these results show that the sooting behavior of gasoline can vary considerably within the range of acceptable compositions, and that these variations can be accurately predicted with empirical models and computational simulations.« less
  6. Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less
  7. Alkylated furans such as 2,5-dimethylfuran and 2-methylfuran can be produced from biomass and have very attractive properties for use as spark-ignition fuel blendstocks. Their high octane numbers, relatively high energy density, low water solubility, and minimal effect on gasoline blend volatility are potentially significant advantages over alcohol-based fuels. However, prior studies have reported poor oxidative stability for furanic compound-gasoline blends, as well as the potential for the formation of dangerous organic peroxides. We show that alkylated furans have very low oxidative stability compared to conventional gasoline. Upon oxidation they form highly polar ring-opening products that can react with the startingmore » furanic compound to form dimers, trimers, and higher polymers with intact furan rings. Dimers of the starting furan compounds were also observed. These gasoline-insoluble gums can be problematic for fuel storage or in vehicle fuel systems. Evaporation to dryness under ambient conditions also produced gum with similar composition. Gums produced via evaporation were found to contain peroxides; however, whether these pose a threat of shock initiated explosion has not been determined. We also propose a density functional theory-based analysis of possible reaction pathways, showing that OH radicals can form by reaction of the alkyl group and that addition of OH radicals to the furan ring is energetically favored and leads to ring opening products. As a result, antioxidant additives can be effective at limiting the oxidation reaction in gasoline, but require much higher concentrations than are commonly used in commercial gasolines.« less
  8. Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less
  9. Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less
  10. Cu-based catalysts containing targeted functionalities including metallic Cu, oxidized Cu, ionic Cu, and Bronsted acid sites were synthesized and evaluated for isobutane dehydrogenation. Hydrogen productivities, combined with operando X-ray absorption spectroscopy, indicated that Cu(I) sites in Cu/BEA catalysts activate C-H bonds in isobutane. Computational analysis revealed that isobutane dehydrogenation at a Cu(I) site proceeds through a two-step mechanism with a maximum energy barrier of 159 kJ/mol. Furthermore, these results demonstrate that light alkanes can be reactivated on Cu/BEA, which may enable re-entry of these species into the chain-growth cycle of dimethyl ether homologation, thereby increasing gasoline-range (C 5+) hydrocarbon yield.

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.