skip to main content


8 results for: All records
Author ORCID ID is 0000000198467140
Full Text and Citations
  1. Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less
  2. Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less
  3. Alkylated furans such as 2,5-dimethylfuran and 2-methylfuran can be produced from biomass and have very attractive properties for use as spark-ignition fuel blendstocks. Their high octane numbers, relatively high energy density, low water solubility, and minimal effect on gasoline blend volatility are potentially significant advantages over alcohol-based fuels. However, prior studies have reported poor oxidative stability for furanic compound-gasoline blends, as well as the potential for the formation of dangerous organic peroxides. We show that alkylated furans have very low oxidative stability compared to conventional gasoline. Upon oxidation they form highly polar ring-opening products that can react with the startingmore » furanic compound to form dimers, trimers, and higher polymers with intact furan rings. Dimers of the starting furan compounds were also observed. These gasoline-insoluble gums can be problematic for fuel storage or in vehicle fuel systems. Evaporation to dryness under ambient conditions also produced gum with similar composition. Gums produced via evaporation were found to contain peroxides; however, whether these pose a threat of shock initiated explosion has not been determined. We also propose a density functional theory-based analysis of possible reaction pathways, showing that OH radicals can form by reaction of the alkyl group and that addition of OH radicals to the furan ring is energetically favored and leads to ring opening products. As a result, antioxidant additives can be effective at limiting the oxidation reaction in gasoline, but require much higher concentrations than are commonly used in commercial gasolines.« less
  4. Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less
  5. Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less
  6. Cu-based catalysts containing targeted functionalities including metallic Cu, oxidized Cu, ionic Cu, and Bronsted acid sites were synthesized and evaluated for isobutane dehydrogenation. Hydrogen productivities, combined with operando X-ray absorption spectroscopy, indicated that Cu(I) sites in Cu/BEA catalysts activate C-H bonds in isobutane. Computational analysis revealed that isobutane dehydrogenation at a Cu(I) site proceeds through a two-step mechanism with a maximum energy barrier of 159 kJ/mol. Furthermore, these results demonstrate that light alkanes can be reactivated on Cu/BEA, which may enable re-entry of these species into the chain-growth cycle of dimethyl ether homologation, thereby increasing gasoline-range (C 5+) hydrocarbon yield.
    Cited by 1
  7. Ultrafast photoinduced electron transfer (PIET) dynamics of a C 70-encapsulated bisporphyrin covalent organic polyhedron hybrid (C 70@COP-5) is studied in a nonpolar toluene medium with fluorescence and transient absorption spectroscopies. This structurally rigid donor (D)-acceptor (A) molecular hybrid offers a new platform featuring conformationally predetermined cofacial D-A orientation with a fixed edge-to-edge separation, R EE (2.8 Å), without the aid of covalent bonds. Sub-picosecond PIET (T ET ≤ 0.4 ps) and very slow charge recombination (T CR ≈ 600 ps) dynamics are observed. The origin of these dynamics is discussed in terms of enhanced D-A coupling (V = 675 cmmore » -1) and extremely small reorganization energy (λ ≈ 0.18 eV), induced by the intrinsic structural rigidity of the C 70@COP-5 complex.« less
  8. Diffusion of biomass pyrolysis vapors and their upgraded products is an essential catalytic property of zeolites during catalytic fast pyrolysis and likely plays a critical role in the selectivity of these catalysts. Characterizing the diffusivities of representative biofuel molecules is critical to understand shape selectivity and interpret product distribution. Yet, experimental measurements on the diffusivities of oxygenated biofuel molecules at pyrolysis temperatures are very limited in the literature. As an alternative approach, we conducted MD simulations to measure the diffusion coefficients of several selected molecules that are representative of biomass pyrolysis vapors, namely water, methanol, glycolaldehyde, and toluene in H-ZSM-5more » zeolite. The results show the diffusion coefficients calculated via MD simulations are consistent with available NMR measurements at room temperature. The effect of molecular weight and molecular critical diameter on the diffusivity among the chosen model compounds is also examined. Furthermore, we have characterized the diffusivities of representative biofuel molecules, namely xylene isomers, in H-ZSM-5. Our calculations determined that the ratio of the diffusion coefficients for xylene isomers is p-xylene: o-xylene: m-xylene ≈ 83:3:1 at 700 K. Furthermore, our results also demonstrate the different diffusivity between p-xylene and toluene is due to the molecular orientations when the molecules diffuse along the channels in H-ZSM-5 and provide deep insight into the effect of molecular orientation on its diffusivity.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.