skip to main content


2 results for: All records
Author ORCID ID is 0000000187585248
Full Text and Citations
  1. Green rusts (GRs) are redox active Fe II-Fe III minerals that form in the environment via various biotic and abiotic processes. Although both biogenic (BioGR) and abiotic (ChemGR) GRs have been shown to reduce U VI, the dynamics of the transformations and the speciation and stability of the resulting U IV phases are poorly understood. We used carbonate extraction and XAFS spectroscopy to investigate the products of U VI reduction by BioGR and ChemGR. The results show that both GRs can rapidly remove U VI from synthetic groundwater via reduction to U IV. The initial products in the ChemGR systemmore » are solids-associated U IV-carbonate complexes that gradually transform to nanocrystalline uraninite over time, leading to a decrease in the proportion of carbonate-extractable U from ~95% to ~10%. In contrast, solid-phase U IV atoms in the BioGR system remain relatively extractable, non-uraninite U IV species over the same reaction period. The presence of calcium and carbonate in groundwater significantly increase the extractability of U IV in the BioGR system. Furthermore, these data provide new insights into the transformations of U under anoxic conditions in groundwater that contains calcium and carbonate, and have major implications for predicting uranium stability within redox dynamic environments and designing approaches for the remediation of uranium-contaminated groundwater.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.