skip to main content

DOE PAGESDOE PAGES

8 results for: All records
Author ORCID ID is 0000000186937010
Full Text and Citations
Filters
  1. Magnetic skyrmions are stable nanosized spin structures that can be displaced at low electrical current densities. Because of these properties, they have been proposed as building blocks of future electronic devices with unprecedentedly high information density and low energy consumption. The electrical detection of an ordered skyrmion lattice via the Topological Hall Effect (THE) in a bulk crystal, has so far been demonstrated only at cryogenic temperatures in the MnSi family of compounds. Here, we report the observation of a skyrmion lattice Topological Hall Effect near room temperature (276 K) in a mesoscopic lamella carved from a bulk crystal ofmore » FeGe. This region coincides with the skyrmion lattice location revealed by neutron scattering. We provide clear evidence of a re-entrant helicoid magnetic phase adjacent to the skyrmion phase, and discuss the large THE amplitude (5 nΩ.cm) in view of the ordinary Hall Effect.« less
  2. Cited by 52Full Text Available
  3. Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
  4. High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less
  5. Metastable structural polymorphs can have superior properties and applications to their thermodynamically stable phases, but the rational synthesis of metastable phases is a challenge. Here in this paper, a new strategy for stabilizing metastable phases using surface functionalization is demonstrated using the example of formamidinium lead iodide (FAPbI 3) perovskite, which is metastable at room temperature (RT) but holds great promises in solar and light-emitting applications. We show that, through surface ligand functionalization during direct solution growth at RT, pure FAPbI 3 in the cubic perovskite phase can be stabilized in nanostructures and thin films at RT without cation ormore » anion alloying. Surface characterizations reveal that long-chain alkyl or aromatic ammonium (LA) cations bind to the surface of perovskite structure. Calculations show that such functionalization reduces the surface energy and plays a dominant role in stabilizing the metastable perovskite phase. Excellent photophysics and optically pumped lasing from the stabilized single-crystal FAPbI 3 nanoplates with low thresholds were demonstrated. High-performance solar cells can be fabricated with such directly synthesized stabilized phase-pure FAPbI3 with a lower bandgap. Our results offer new insights on the surface chemistry of perovskite materials and provide a new strategy for stabilizing metastable perovskites and metastable polymorphs of solid materials in general.« less
  6. The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less
  7. Hybrid organic-inorganic perovskites demonstrate desirable photophysical behaviors and promising applications from efficient photovoltaics to lasing, but the fundamental nature of excited state species is still under debate. We also collected time-resolved photoluminescence of single-crystal nanoplates of methylammonium lead iodide perovskite (MAPbI3), with excitation over a range of fluences and repetition rates, to provide a more complete photophysical picture. A fundamentally different way of simulating the photophysics is developed that relies on unnormalized decays, global analysis over a large array of conditions, and inclusion of steady-state behavior; these details are critical to capturing observed behaviors. These additional constraints require inclusion ofmore » spatially-correlated pairs, along with free carriers and traps, demonstrating the importance of our comprehensive analysis. Modeling geminate and non-geminate pathways shows geminate processes are dominant at high carrier densities and early times. This combination of data and simulation provides a detailed picture of perovskite photophysics across multiple excitation regimes that was not previously available.« less
    Cited by 10Full Text Available

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.