skip to main content

DOE PAGESDOE PAGES

6 results for: All records
Author ORCID ID is 0000000173171642
Full Text and Citations
Filters
  1. In the exceedingly rare event of nuclear reactor core meltdown, uranium dioxide fuel reacts with Zircaloy cladding to produce eutectic melts which can subsequently be oxidized by coolant/moderator water. Oxidized corium liquids in the xUO 2·(100 – x)ZrO 2 system were produced via laser melting of UO 2-ZrO 2 mixtures to temperatures in excess of 3000 K. Contamination was avoided by floating the droplets on a gas stream within an aerodynamic levitator and in-situ high-energy x-ray diffraction experiments allowed structural details to be elucidated. Molecular dynamics simulations well reproduced diffraction and density data, and show less compositional variation in thermalmore » expansion and viscosity than suggested by existing measurements. As such, corium liquids maintain their highly penetrating nature irrespective of the amount of oxidized cladding dissolved in the molten fuel. Metal-oxygen coordination numbers vary with both composition and temperature. The former is due to mismatch in native values, n UO(x = 100) ≈ 7 and n ZrO(x = 0) ≈ 6, and the requirement for oxygen site stabilization. Furthermore, the latter provides a thermal expansion mechanism.« less
  2. In this paper, a combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na +. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å –1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å –1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, g NaO(r). The measured Na–O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Åmore » (EXAFS) are in excellent agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–O avg ~ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na–O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (–D3 and –D2) significantly worsens the agreement with experiment by further increasing the Na–O distance by 0.07 Å. In contrast, the use of a classical Na–O Lennard-Jones potential with SPC/E water accurately predicts the Na–O distance as 2.39 Å although the Na–O peak is over-structured with respect to experiment.« less
  3. High energy X-ray diffraction experiments performed on hypostoichiometric UO 2-x liquids in reducing gas mixtures of 95%Ar:5%CO and 95%Ar:5%H 2 are compared to that conducted in a pure Ar atmosphere [Skinner et al., Science 346, 984 (2014)]. The measurements are pertinent to severe accident scenarios at nuclear reactors, where core melts can encounter reducing conditions and further shed light on the oxide chemistry of the low valence states of uranium, particularly U(III), which become stable only at very high temperatures and low oxygen potentials. The radioactive samples were melted by floating small spheres of material using an aerodynamic levitator andmore » heating with a laser beam. In the more reducing environments, a 1.7% shift to lower Q-values is observed in the position of the principal peak of the measured X-ray structure factors, compared to the more oxidizing Ar environment. This corresponds to an equivalent elongation in the U-U nearest neighbor distances and the U-U periodicity. The U-O peak (modal) bond-length, as measured from the real-space total correlation functions, is also observed to expand by 0.9–1.6% under reducing conditions, consistent with the presence of 15–27% U 3+ cations, assuming constant U-O coordination number. The slightly larger U-U elongation, as compared to the U-O elongation, is interpreted as a slight increase in U-O-U bond angles. Difficulties concerning the determination of the hypostoichiometry, x, are discussed, along with the future directions for related research.« less
  4. Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less
  5. In this study, x-ray diffraction measurements of liquid water are reported at pressures up to 360 MPa corresponding to a density of 0.0373 molecules per Å 3. The measurements were conducted at a spatial resolution corresponding to Q max = 16 Å -1. The method of data analysis and measurement in this study follows the earlier benchmark results reported for water under ambient conditions having a density of 0.0333 molecules per Å 3 and Q max = 20 Å -1 [J. Chem. Phys. 138, 074506 (2013)] and at 70°C having a density of 0.0327 molecules per Å 3 and Qmore » max = 20 Å -1 [J. Chem. Phys. 141, 214507 (2014)]. The structure of water is very different at these three different T and P state points and thus they provide the basis for evaluating the fidelity of molecular simulation. Measurements show that at 360 MPa, the 4 waters residing in the region between 2.3 and 3 Å are nearly unchanged: the peak position, shape, and coordination number are nearly identical to their values under ambient conditions. However, in the region above 3 Å, large structural changes occur with the collapse of the well-defined 2nd shell and shifting of higher shells to shorter distances. The measured structure is compared to simulated structure using intermolecular potentials described by both first-principles methods (revPBE-D3) and classical potentials (TIP4P/2005, MB-pol, and mW). The DFT-based, revPBE-D3, method and the many-body empirical potential model, MB-pol, provide the best overall representation of the ambient, high-temperature, and high-pressure data. Finally, the revPBE-D3, MB-pol, and the TIP4P/2005 models capture the densification mechanism, whereby the non-bonded 5th nearest neighbor molecule, which partially encroaches the 1st shell at ambient pressure, is pushed further into the local tetrahedral arrangement at higher pressures by the more distant molecules filling the void space in the network between the 1st and 2nd shells.« less
  6. We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å -1 was significantly decreased when themore » collimators were installed.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.