skip to main content

DOE PAGESDOE PAGES

4 results for: All records
Author ORCID ID is 0000000160345893
Full Text and Citations
Filters
  1. This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditionsmore » under which they are negligible.« less
  2. Here, we report on the synthesis, stability, and local structure of In 2O 3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In 2O 3 deposited onto (001)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski–Krastanov growth mode at a temperature of 850°C, resulting in epitaxial, truncated square pyramids with (111) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In 2O 3 from the magnetron source. Lastly, we also find that the internal lattice structure of onemore » such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In 2O 3 nanostructures and films.« less
    Cited by 1
  3. In this paper, we report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. Lastly, this capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.
  4. In this study, we have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.