DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Phenological control of vegetation biophysical feedbacks to the regional climate

    Phenology shifts influence regional climate by altering energy, and water fluxes through biophysical processes. However, a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to regional climate remains elusive. Using long-term remote sensing observations and Weather Research and Forecasting (WRF) model simulations, we investigated vegetation phenology changes from 2003 to 2020 and quantified their biophysical controls on the regional climate in Northeast China. Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests, while advanced green-up and delayed dormancy extended the growing season in croplands. This prolonged presence and increased maximum green cover intensifiedmore » climate-vegetation interactions, resulting in more significant surface cooling in croplands compared to forests. Surface cooling from forest phenology changes was prominent during May’s green-up (-0.53 ± 0.07 °C), while crop phenology changes induced cooling throughout the growing season, particularly in June (-0.47 ± 0.15 °C), July (-0.48 ± 0.11 °C), and September (-0.28 ± 0.09 °C). Furthermore, we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model, with aerodynamic resistance emerging as the dominant factor. Crucially, our findings underscored that the land surface temperature (LST) sensitivity, exhibited substantially higher values in croplands rather than temperate forests. These strong sensitivities, coupled with the projected continuation of phenology shifts, portend further growing season cooling in croplands. These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature, emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.« less
  2. Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)

    Plant and microbial nitrogen (N) dynamics and N availability regulate the photosynthetic capacity and capture, allocation, and turnover of carbon (C) in terrestrial ecosystems. Studies have shown that a wide divergence in representations of N dynamics in land surface models leads to large uncertainties in the biogeochemical cycle of terrestrial ecosystems and then in climate simulations as well as the projections of future trajectories. In this study, a plant C–N interface coupling framework is developed and implemented in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0). The main concept and structure of this plant C–N framework and its coupling strategy are presentedmore » in this study. This framework takes more plant N-related processes into account. The dynamic ratio (CNR) for each plant functional type (PFT) is introduced to consider plant resistance and adaptation to N availability to better evaluate the plant response to N limitation. Furthermore, when available N is less than plant N demand, plant growth is restricted by a lower maximum carboxylation capacity of RuBisCO (Vc,max), reducing gross primary productivity (GPP). In addition, a module for plant respiration rates is introduced by adjusting the respiration with different rates for different plant components at the same N concentration. Since insufficient N can potentially give rise to lags in plant phenology, the phenological scheme is also adjusted in response to N availability. All these considerations ensure a more comprehensive incorporation of N regulations to plant growth and C cycling. This new approach has been tested systematically to assess the effects of this coupling framework and N limitation on the terrestrial carbon cycle. Long-term measurements from flux tower sites with different PFTs and global satellite-derived products are employed as references to assess these effects. The results show a general improvement with the new plant C–N coupling framework, with more consistent emergent properties, such as GPP and leaf area index (LAI), compared to the observations. The main improvements occur in tropical Africa and boreal regions, accompanied by a decrease in the bias in global GPP and LAI by 16.3 % and 27.1 %, respectively.« less
  3. Tracking precipitation features and associated large-scale environments over southeastern Texas

    Deep convection initiated under different large-scale environmental conditions exhibits different precipitation features and interacts with local meteorology and surface properties in distinct ways. Here, we analyze the characteristics and spatiotemporal patterns of different types of convective systems over southeastern Texas using 13 years of high-resolution observations and reanalysis data. We find that mesoscale convective systems (MCSs) contribute significantly to both mean and extreme precipitation in all seasons, while isolated deep convection (IDC) plays a role in intense precipitation during summer and fall. Using self-organizing maps (SOMs), we found that convection can occur under unfavorable conditions without large-scale lifting or moisture convergence.more » In spring, fall, and winter, front-related large-scale meteorological patterns (LSMPs) characterized by low-level moisture convergence act as primary triggers for convection, while the remaining storms are associated with an anticyclonic pattern and orographic lifting. In summer, IDC events are mainly associated with front-related and anticyclonic LSMPs, while MCSs occur more in front-related LSMPs. We further tracked the life cycle of MCS and IDC events using the Flexible Object Tracker algorithm over southeastern Texas. MCSs frequently initiate west of Houston, traveling eastward for around 8 h to southeastern Texas, while IDC events initiate locally. The average duration of MCSs in southeastern Texas is 6.1 h, approximately 4.1 times the duration of IDC events. Diurnally, the initiation of convection associated with favorable LSMPs peaks at 11:00 UTC, 3 h earlier than that associated with anticyclones.« less
  4. Offshore low-level jet observations and model representation using lidar buoy data off the California coast

    Low-level jets (LLJs) occur under a variety of atmospheric conditions and influence the available wind resource for wind energy projects. In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas administered by the Bureau of Ocean Energy Management: Humboldt and Morro Bay. The wind profile observations from the lidars and collocated near-surface meteorological stations (4-240 m) provide valuable year-long analyses of offshore LLJ characteristics at heights relevant to wind turbines. At Humboldt, LLJs were associated with flow reversals and north-northeasterly winds, directions that are more aligned with terrain influencesmore » than the predominant northerly flow. At Morro Bay, coastal LLJs were observed primarily during northerly flow as opposed to the predominant north-northwesterly flow. LLJs were observed more frequently in colder seasons within the lowest 250 m a.s.l. (above sea level), in contrast with the summertime occurrence of the higher-altitude California coastal jet influenced by the North Pacific High, which typically occurs at heights of 300-400 m. The lidar buoy observations also validate LLJ representation in atmospheric models that estimate potential energy yield of offshore wind farms. The European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) was unsuccessful at identifying all observed LLJs at both buoy locations within the lowest 200 m. An extension of the National Renewable Energy Laboratory (NREL) 20-year wind resource dataset for the Outer Continental Shelf off the coast of California (CA20-Ext) yielded marginally greater captures of observed LLJs using the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary layer (PBL) scheme than the 2023 National Offshore Wind dataset (NOW-23), which uses the Yonsei University (YSU) scheme. However, CA20-Ext also produced the most LLJ false alarms, which are instances when a model identified an LLJ but no LLJ was observed. CA20-Ext and NOW-23 exhibited a tendency to overestimate the duration of LLJ events and underestimate LLJ core heights.« less
  5. Identifying Meteorological Drivers for Errors in Modeled Winds along the Northern California Coast

    An accurate wind resource dataset is required for assessing the potential energy yield of floating offshore wind farms that are expected along the California outer continental shelf. The National Renewable Energy Laboratory has developed and disseminated an updated wind resource dataset offshore of California, using the Weather Research and Forecasting Model, referred to as the CA20 dataset. As compared to buoy lidar measurements that have become available recently, the CA20 dataset showed significant positive biases for 100-m wind speeds along Northern California wind energy lease areas. To investigate the meteorological drivers for the model errors, we first consider two 1-yrmore » simulations run with two different planetary boundary layer (PBL) parameterizations: the Mellor–Yamada–Nakanishi–Niino (MYNN) PBL scheme (the chosen configuration in the CA20 dataset) and the Yonsei University PBL scheme (which significantly reduces the bias in modeled winds). By comparing the 1-yr simulations to the concurrent lidar buoy observations, we find that errors are larger with the MYNN PBL scheme in warm seasons. We then dive deeper into the analysis by running simulations for short-term (3-day) case studies to evaluate the sensitivity of initial/boundary condition forcings on model results. By analyzing the short-term simulations, we find that during synoptic-scale northerly flows driven by the North Pacific high and inland thermal low, a coastal warm bias in the MYNN simulation is mainly responsible for the modeled wind speed bias by altering the boundary layer thermodynamics. In conclusion, the results of our analysis will help guide the creation of an updated version of the CA20 dataset.« less
  6. How do North American weather regimes drive wind energy at the sub-seasonal to seasonal timescales?

    There has been an increasing need for forecasting power generation at the subseasonal to seasonal (S2S) timescales to support the operation, management, and planning of the wind-energy system. At the S2S timescales, atmospheric variability is largely related to recurrent and persistent weather patterns, referred to as weather regimes (WRs). In this study, we identify four WRs that influence wind resources over North America using a universal two-stage procedure approach. These WRs are responsible for large-scale wind and power production anomalies over the CONUS at the S2S timescales. The WR-based reconstruction explains up to 40% of the monthly variance of powermore » production over the western United States, and the explanatory power of WRs generally increases with the increase of timescales. The identified relationship between WRs and power production reveals the potential and limitations of the regional WR-based wind resource assessment over different regions of the CONUS across multiple timescales.« less
  7. Where does the dust deposited over the Sierra Nevada snow come from?

    Abstract. Mineral dust contributes up to one-half of surface aerosol loading in spring over the southwestern United States, posing an environmental challenge that threatens human health and the ecosystem. Using self-organizing map (SOM) analysis with dust deposition and flux data from WRF-Chem and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale winds, Sierra barrier jet (SBJ), North Pacific High (NPH), and long-range cross-Pacific westerlies, respectively. We find that dust emitted from the Central Valley is persistently transported eastward, while dust from the Mojavemore » Desert and Great Basin influences the Sierra Nevada during mesoscale transport occurring mostly in winter and early spring. Asian dust reaching the mountain range comes either from the west through straight isobars (cross-Pacific transport) or from the north in the presence of the NPH. Extensive dust depositions are found on the west slope of the mountain, contributed by Central Valley emissions and cross-Pacific remote transport. In particular, the SBJ-related transport produces deposition through landfalling atmospheric rivers, whose frequency might increase in a warming climate.« less
  8. Local-thermal-gradient and large-scale-circulation impacts on turbine-height wind speed forecasting over the Columbia River Basin

    We investigate the sensitivity of turbine-height wind speed forecast to initial condition (IC) uncertainties over the Columbia River Gorge (CRG) and Columbia River Basin (CRB) for two typical weather phenomena, i.e., local-thermal-gradient-induced marine air intrusion and a cold frontal passage. Four types of turbine-height wind forecast anomalies and their associated IC uncertainties related to local thermal gradients and large-scale circulations are identified using the self-organizing map (SOM) technique. The four SOM types are categorized into two patterns, each accounting for half of the ensemble members. The first pattern corresponds to IC uncertainties that alter the wind forecast through a modulating weather system, which produces themore » strongest wind anomalies in the CRG and CRB. In the second pattern, the moderate uncertainties in local thermal gradient and large-scale circulation jointly contribute to wind forecast anomaly. We analyze the cross section of wind and temperature anomalies through the gorge to explore the evolution of vertical features of each SOM type. The turbine-height wind anomalies induced by large-scale IC uncertainties are more concentrated near the front. In contrast, turbine-height wind anomalies induced by the local IC thermal uncertainties are found above the surface thermal anomalies. Moreover, the wind forecast accuracy in the CRG and CRB is limited by IC uncertainties in a few specific regions, e.g., the 2 m temperature within the basin and large-scale circulation over the northeast Pacific around 140°W.« less
  9. Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design

    Subseasonal-to-seasonal (S2S) prediction, especially the prediction of extreme hydroclimate events such as droughts and floods, is not only scientifically challenging, but also has substantial societal impacts. Motivated by preliminary studies, the Global Energy and Water Exchanges (GEWEX)/Global Atmospheric System Study (GASS) has launched a new initiative called “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction” (LS4P) as the first international grass-roots effort to introduce spring land surface temperature (LST)/subsurface temperature (SUBT) anomalies over high mountain areas as a crucial factor that can lead to significant improvement in precipitation prediction through the remote effects of land–atmospheremore » interactions. LS4P focuses on process understanding and predictability, and hence it is different from, and complements, other international projects that focus on the operational S2S prediction. More than 40 groups worldwide have participated in this effort, including 21 Earth system models, 9 regional climate models, and 7 data groups.(GEWEX)/Global Atmospheric System Study (GASS) has launched a new initiative called “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction” (LS4P) as the first international grass-roots effort to introduce spring land surface temperature (LST)/subsurface temperature (SUBT) anomalies over high mountain areas as a crucial factor that can lead to significant improvement in precipitation prediction through the remote effects of land–atmosphere interactions. LS4P focuses on process understanding and predictability, and hence it is different from, and complements, other international projects that focus on the operational S2S prediction. More than 40 groups worldwide have participated in this effort, including 21 Earth system models, 9 regional climate models, and 7 data groups. This paper provides an overview of the history and objectives of LS4P, provides the first-phase experimental protocol (LS4P-I) which focuses on the remote effect of the Tibetan Plateau, discusses the LST/SUBT initialization, and presents the preliminary results. Multi-model ensemble experiments and analyses of observational data have revealed that the hydroclimatic effect of the spring LST on the Tibetan Plateau is not limited to the Yangtze River basin but may have a significant large-scale impact on summer precipitation beyond East Asia and its S2S prediction. Preliminary studies and analysis have also shown that LS4P models are unable to preserve the initialized LST anomalies in producing the observed anomalies largely for two main reasons: (i) inadequacies in the land models arising from total soil depths which are too shallow and the use of simplified parameterizations, which both tend to limit the soil memory; (ii) reanalysis data, which are used for initial conditions, have large discrepancies from the observed mean state and anomalies of LST over the Tibetan Plateau. Innovative approaches have been developed to largely overcome these problems.« less

Search for:
All Records
Creator / Author
0000000151318412

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization