DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Optimal Power Flow With State Estimation in the Loop for Distribution Networks

    Here in this article, we propose a framework for running optimal control-estimation synthesis in distribution networks. Our approach combines a primal-dual gradient-based optimal power flow solver with a state estimation feedback loop based on a limited set of sensors for system monitoring, instead of assuming exact knowledge of all states. The estimation algorithm reduces uncertainty on unmeasured grid states based on certain online state measurements and noisy "pseudomeasurements." We analyze the convergence of the proposed algorithm and quantify the statistical estimation errors based on a weighted least-squares estimator. The numerical results on a 4521-node network demonstrate that this approach canmore » scale to extremely large networks and provide robustness to both large pseudomeasurement variability and inherent sensor measurement noise.« less
  2. An Online Joint Optimization–Estimation Architecture for Distribution Networks

    Here in this article, we propose an optimal joint optimization-estimation architecture for distribution networks, which jointly solves the optimal power flow (OPF) problem and static state estimation (SE) problem through an online gradient-based feedback algorithm. The main objective is to enable a fast and timely interaction between the OPF decisions and state estimators with limited sensor measurements. First, convergence and optimality of the proposed algorithm are analytically established. Then, the proposed gradient-based algorithm is modified by introducing statistical information of the inherent estimation and linearization errors for an improved and robust performance of the online OPF decisions. Overall, the proposedmore » method eliminates the traditional separation of operation and monitoring, where optimization and estimation usually operate at distinct layers and different time scales. Hence, it enables a computationally affordable, efficient, and robust online operational framework for distribution networks under time-varying settings.« less
  3. Optimal Energy Scheduling and Sensitivity Analysis for Integrated Power-Water-Heat Systems

    The conventionally independent power, water, and heating networks are becoming more tightly connected, which motivates their joint optimal energy scheduling to improve the overall efficiency of an integrated energy system. However, such a joint optimization is known as a challenging problem with complex network constraints and couplings of electric, hydraulic, and thermal models that are nonlinear and nonconvex. We formulate an optimal power-water-heat flow (OPWHF) problem and develop a computationally efficient heuristic to solve it. The proposed heuristic decomposes OPWHF into subproblems, which are iteratively solved via convex relaxation and convex-concave procedure. Simulation results validate that the proposed framework canmore » improve operational flexibility and social welfare of the integrated system, wherein the water and heating networks respond as virtual energy storage to time-varying energy prices and solar photovoltaic generation. Moreover, we perform sensitivity analysis to compare two modes of heating network control: by flow rate and by temperature. Our results reveal that the latter is more effective for heating networks with a wider space of pipeline parameters.« less
  4. Economic Dispatch With Distributed Energy Resources: Co-Optimization of Transmission and Distribution Systems

    The increasing penetration of distributed energy resources (DERs) in the distribution networks has turned the conventionally passive load buses into active buses that can provide grid services for the transmission system. To take advantage of the DERs in the distribution networks, this letter formulates a transmission-and-distribution (T&D) systems co-optimization problem that achieves economic dispatch at the transmission level and optimal voltage regulation at the distribution level by leveraging large generators and DERs. A primal-dual gradient algorithm is proposed to solve this optimization problem jointly for T&D systems, and a distributed market-based equivalent of the gradient algorithm is used for practicalmore » implementation. Finally, the results are corroborated by numerical examples with the IEEE 39-Bus system connected with 7 different distribution networks.« less
  5. Accelerated Voltage Regulation in Multi-Phase Distribution Networks Based on Hierarchical Distributed Algorithm

    Here, we introduce a hierarchical distributed algorithm to solve optimal power flow (OPF) problems that aim at dispatching controllable distributed energy resources (DERs) for voltage regulation at minimum cost. The proposed algorithm highlights unprecedented scalability to large multi-phase distribution networks by jointly exploring the tree/subtrees structure of a large radial distribution network and the structure of the linearized distribution power flow (LinDistFlow) model to derive a hierarchical, distributed implementation of the primal-dual gradient algorithm that solves OPF. The proposed implementation significantly reduces the computation loads compared to the centrally coordinated implementation of the same primal-dual algorithm without compromising optimality. Numericalmore » findings on a 4,521-node test feeder show that the designed algorithm achieves more than 10-fold acceleration in the speed of convergence compared to the centrally coordinated primal-dual algorithm through reducing and distributing computational loads.« less
  6. Power-traffic coordinated operation for bi-peak shaving and bi-ramp smoothing – A hierarchical data-driven approach

    The power distribution system and urban transportation system are two networked system bare their own operation constraints, such peak load in power systems and traffic congestion in transportation system. With the increasing number of electrical vehicles and charging/discharging stations, two systems are become tightly coupled. However, to optimize the two systems target using electrical vehicles as decision control variables cannot be easily solved using a uniformed optimization frame work. Thus we propose a hierarchical optimization approach to address this problem, which consists of a higher and a lower level. In the higher level, the power distribution system and urban transportationmore » system are treated together to minimize the social cost. Meanwhile, the electrical vehicles and the charging/discharging stations are treated as customers to minimize their own expenditures. Then, an equilibrium is designed to determine the optimal charging/discharging price. In the lower level, the models of power distribution system and urban transportation system are developed to provide a detailed analysis. Specifically, in power distribution system, the three-phase unbalanced optimal power flow problem is relaxed with the semidefinite relaxation programming, and solved with alternating direction method of multiplier. A dynamic user equilibrium problem is formulated for the urban transportation system. For electrical vehicles, the state of charge is considered to optimize the charging/discharging schedule and reduce the impacts of power distribution systems. We conducted the simulation and numerical analysis using the IEEE 8500-bus distribution system and the Sioux Falls system with about 10,000 cars. The results demonstrate the feasibility and effectiveness of the proposed approach.« less
  7. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Lastly, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less
  8. Distributed plug-and-play optimal generator and load control for power system frequency regulation

    A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less
  9. Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs

    Frequency restoration in power systems is conven- tionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with amore » nonlinear and multivariable power system model. Here, we demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed- averaging-based integral control in theory and simulations.« less
  10. Network-Cognizant Voltage Droop Control for Distribution Grids

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

Search for:
All Records
Creator / Author
"Zhao, Changhong"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization