A systematic feature extraction and selection framework for data-driven whole-building automated fault detection and diagnostics in commercial buildings
In data-driven automated fault detection and diagnostics (AFDD) modeling for building energy systems, feature engineering is a critical process of extracting information from high-dimensional and noisy sensor measurement and turning it into informative and representative inputs or features for data-driven modeling. However, few studies specifically discuss the feature engineering, especially the interactions between feature extraction and feature selection in whole-building AFDD. We developed a systematic feature extraction and selection framework for whole-building AFDD. In this framework, features are aggressively extracted from raw sensor data using statistical feature extraction techniques with various window sizes and statistics. With many features extracted, amore »