DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Phenological control of vegetation biophysical feedbacks to the regional climate

    Phenology shifts influence regional climate by altering energy, and water fluxes through biophysical processes. However, a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to regional climate remains elusive. Using long-term remote sensing observations and Weather Research and Forecasting (WRF) model simulations, we investigated vegetation phenology changes from 2003 to 2020 and quantified their biophysical controls on the regional climate in Northeast China. Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests, while advanced green-up and delayed dormancy extended the growing season in croplands. This prolonged presence and increased maximum green cover intensifiedmore » climate-vegetation interactions, resulting in more significant surface cooling in croplands compared to forests. Surface cooling from forest phenology changes was prominent during May’s green-up (-0.53 ± 0.07 °C), while crop phenology changes induced cooling throughout the growing season, particularly in June (-0.47 ± 0.15 °C), July (-0.48 ± 0.11 °C), and September (-0.28 ± 0.09 °C). Furthermore, we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model, with aerodynamic resistance emerging as the dominant factor. Crucially, our findings underscored that the land surface temperature (LST) sensitivity, exhibited substantially higher values in croplands rather than temperate forests. These strong sensitivities, coupled with the projected continuation of phenology shifts, portend further growing season cooling in croplands. These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature, emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.« less
  2. Vegetation-induced asymmetric diurnal land surface temperatures changes across global climate zones

    Unprecedented global vegetation greening during past decades is well known to affect annual and seasonal land surface temperatures (LST). However, the impact of observed vegetation cover change on diurnal LST across global climatic zones is not well understood. In this study, using global climatic time-series datasets, we investigated the long-term growing season daytime and nighttime LST changes globally and explored associated dominant contributors including vegetation and climate factors including air temperature, precipitation, and solar radiation. Results revealed asymmetric growing season mean daytime and nighttime LST warming (0.16 °C/10a and 0.30 °C/10a, respectively) globally from 2003 to 2020, as a result,more » the diurnal LST range (DLSTR) declined at 0.14 °C/10a. The sensitivity analysis indicated the LST response to changes in LAI, precipitation, and SSRD mainly concentrated during daytime instead of nighttime, however, which showed comparable sensitivities for air temperature. Combining the sensitivities results and the observed LAI and climate trends, we found rising air temperature contributes to 0.24 ± 0.11 °C/10a global daytime LST warming and 0.16 ± 0.07 °C/10a nighttime LST warming, turns to be the dominant contributor to the LST changes. Increased LAI cooled global daytime LST (–0.068 ± 0.096 °C/10a) while warmed nighttime LST (0.064 ± 0.046 °C/10a); hence LAI dominates declines in DLSTR trends (–0.12 ± 0.08 °C/10a), despite some daynight process variations across climate zones. In Boreal regions, reduced DLSTR was due to nighttime warming from LAI increases. In other climatic zones, daytime cooling, and DLSTR decline, was induced by increased LAI. Biophysically, the pathway from air temperature heats the surface through sensible heat and increased downward longwave radiation during day and night, while the pathway from LAI cools the surface by enhancing energy redistribution into latent heat rather than sensible heat during the daytime. These empirical findings of diverse asymmetric responses could help calibrate and improve biophysical models of diurnal surface temperature feedback in response to vegetation cover changes in different climate zones.« less

Search for:
All Records
Creator / Author
"Yan, Fengqin"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization