DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Methods for Analysis and Quantification of Power System Resilience

    This paper summarizes the report prepared by an IEEE PES Task Force. Resilience is a fairly new technical concept for power systems, and it is important to precisely delineate this concept for actual applications. As a critical infrastructure, power systems have to be prepared to survive rare but extreme incidents (natural catastrophes, extreme weather events, physical/cyber-attacks, equipment failure cascades, etc.) to guarantee power supply to the electricity-dependent economy and society. Thus, resilience needs to be integrated into planning and operational assessment to design and operate adequately resilient power systems. Quantification of resilience as a key performance indicator is important, togethermore » with costs and reliability. Quantification can analyze existing power systems and identify resilience improvements in future power systems. Given that a 100% resilient system is not economic (or even technically achievable), the degree of resilience should be transparent and comprehensible. Several gaps are identified to indicate further needs for research and development.« less
  2. Resilience-Motivated Distribution System Restoration Considering Electricity-Water-Gas Interdependency

    A major outage in the electricity distribution system may affect the operation of water and natural gas supply systems, leading to an interruption of multiple services to critical customers. Therefore, enhancing resilience of critical infrastructures requires joint efforts of multiple sectors. In this paper, a distribution system service restoration method considering the electricity-water-gas interdependency is proposed. The objective is maximizing the supply of electricity, water, and gas to critical customers after an extreme event. The operational constraints of electricity, water, and natural gas networks are considered. Additionally, the characteristics of electricity-driven coupling components, including water pumps and gas compressors, aremore » also modeled. Relaxation techniques are applied to non convex constraints posed by physical laws of those networks. Consequently, the restoration problem is formulated as a mixed-integer second-order cone program, which can readily be solved by the off-the-shelf solvers. The proposed method is validated by numerical simulations on an electricity-water-gas integrated system, developed based on benchmark models of the subsystems. The results indicate that considering the interdependency refines the allocation of limited generation resources and demonstrate the exactness of the proposed convex relaxation« less
  3. Consensus weighting of a multi-agent system for load shedding

    In this work, an agent-based scheme is proposed for distributed underfrequency load shedding (UFLS). The key concept is a consensus weighting protocol (CWP) for agents to reach an agreement. Unlike the well adopted average-consensus protocol (ACP), the proposed CWP enables each agent to converge to its weighted portion of the sum of all initial values. Thus, the proposed CWP is more suitable for the UFLS application, as it allows load buses with a higher level of loading to shed more, rather than reducing by the same average value over all load buses as required by the ACP. Proof of convergencemore » for the proposed CWP is derived and presented in this paper, together with the constraints. For implementation of the multi-agent system (MAS), the monitoring, estimation, and distribution steps are developed. Two study cases and the simulation results are provided to validate the performance of the proposed agent-based UFLS scheme.« less
  4. DGs for Service Restoration to Critical Loads in a Secondary Network

    During a major outage in a secondary network distribution system, distributed generators (DGs) connected to the primary feeders as well as the secondary network can be used to serve critical loads. This paper proposed a resilience-oriented method to determine restoration strategies for secondary network distribution systems after a major disaster. Technical issues associated with the restoration process are analyzed, including the operation of network protectors, inrush currents caused by the energization of network transformers, synchronization of DGs to the network, and circulating currents among DGs. A look-ahead load restoration framework is proposed, incorporating technical issues associated with secondary networks, limitsmore » on DG capacity and generation resources, dynamic constraints, and operational limits. The entire outage duration is divided into a sequence of periods. Restoration strategies can be adjusted at the beginning of each period using the latest information. Finally, numerical simulation of the modified IEEE 342-node low voltage networked test system is performed to validate the effectiveness of the proposed method.« less
  5. Smart distribution systems

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less
  6. Enabling Resiliency Operations across Multiple Microgrids with Grid Friendly Appliance Controllers

    Changes in economic, technological, and environmental policies are resulting in a re-evaluation of the dependence on large central generation facilities and their associated transmission networks. Emerging concepts of smart communities/cities are examining the potential to leverage cleaner sources of generation, as well as integrating electricity generation with other municipal functions. When grid connected, these generation assets can supplement the existing interconnections with the bulk transmission system, and in the event of an extreme event, they can provide power via a collection of microgrids. To achieve the highest level of resiliency, it may be necessary to conduct switching operations to interconnectmore » individual microgrids. While the interconnection of multiple microgrids can increase the resiliency of the system, the associated switching operations can cause large transients in low inertia microgrids. The combination of low system inertia and IEEE 1547 and 1547a-compliant inverters can prevent multiple microgrids from being interconnected during extreme weather events. This study will present a method of using end-use loads equipped with Grid Friendlyâ„¢ Appliance controllers to facilitate the switching operations between multiple microgrids; operations that are necessary for optimal operations when islanded for resiliency.« less
  7. CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches

    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+more » electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.« less
  8. Nano flake Ag3PO4 enhanced photocatalytic activity of bisphenol A under visible light irradiation


Search for:
All Records
Creator / Author
"Xu, Yin"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization