DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Fault-Tolerant Operation of Bosonic Qubits with Discrete-Variable Ancillae

    Fault-tolerant quantum computation with bosonic qubits often necessitates the use of noisy discrete-variable ancillae. In this work, we establish a comprehensive and practical fault-tolerance framework for such a hybrid system and synthesize it with fault-tolerant protocols by combining bosonic quantum error correction (QEC) and advanced quantum control techniques. We introduce essential building blocks of error-corrected gadgets by leveraging ancilla-assisted bosonic operations using a generalized variant of path-independent quantum control. Using these building blocks, we construct a universal set of error-corrected gadgets that tolerate a single-photon loss and an arbitrary ancilla fault for four-legged cat qubits. Notably, our construction requires onlymore » dispersive coupling between bosonic modes and ancillae, as well as beam-splitter coupling between bosonic modes, both of which have been experimentally demonstrated with strong strengths and high accuracy. Moreover, each error-corrected bosonic qubit is comprised of only a single bosonic mode and a three-level ancilla, featuring the hardware efficiency of bosonic QEC in the full fault-tolerant setting. We numerically demonstrate the feasibility of our schemes using current experimental parameters in the circuit-QED platform. Finally, we present a hardware-efficient architecture for fault-tolerant quantum computing by concatenating the four-legged cat qubits with an outer qubit code utilizing only beam-splitter couplings. Our estimates suggest that the overall noise threshold can be reached using existing hardware. These developed fault-tolerant schemes extend beyond their applicability to four-legged cat qubits and can be adapted for other rotation-symmetrical codes, offering a promising avenue toward scalable and robust quantum computation with bosonic qubits. Published by the American Physical Society 2024« less
  2. Synergistic Coupling Effect of Electronic Conductivity and Interphase Compatibility on High-Voltage Na3V2(PO4)2F3 Cathodes

    Na3V2(PO4)2F3 (NVPF) has been considered an up-and-coming cathode material candidate for sodium (Na) ion batteries in light of its high specific capacity and working voltage. However, an erratic cathode/electrolyte interface layer is inevitably formed, accompanied by continuous electrolyte decomposition on the NVPF surface, when the voltage exceeds 4.2 V vs Na+/Na. Herein, the interphase features of NVPF are obviously enhanced owing to the ameliorated electronic conductivity obtained by combining it with carbon nanotubes (CNT). The NVPF with 3 wt % CNT (NVPF@3% CNT) reduces the Na+ diffusion kinetic energy barrier and electron transport resistance. Furthermore, the conducting network formed bymore » CNT with sturdy structure strength can promptly accommodate the volumetric changes during sequential Na+ extraction/insertion and thus effectively improve the long-term cyclic performance of NVPF/hard carbon full cells. The initial discharge capacity approaches 105 mA h g–1 at 0.5C, and it retains 94% capacity retention after 200 cycles at the temperature of –10 °C. The cathode/electrolyte interphase characterization results further demonstrate that the interphase layer on the NVPF@3% CNT cathode is thinner and more compact compared with pristine samples. Here, this research provides a competitive strategy to facilitate the interfacial compatibility between the NVPF and electrolytes and accelerate the commercialization of high-performance Na-ion batteries.« less
  3. Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits

    We propose an autonomous quantum error correction scheme using squeezed cat (SC) code against excitation loss in continuous-variable systems. Through reservoir engineering, we show that a structured dissipation can stabilize a two-component SC while autonomously correcting the errors. The implementation of such dissipation only requires low-order nonlinear couplings among three bosonic modes or between a bosonic mode and a qutrit. While our proposed scheme is device independent, it is readily implementable with current experimental platforms such as superconducting circuits and trapped-ion systems. Compared to the stabilized cat, the stabilized SC has a much lower dominant error rate and a significantlymore » enhanced noise bias. Furthermore, the bias-preserving operations for the SC have much lower error rates. In combination, the stabilized SC leads to substantially better logical performance when concatenating with an outer discrete-variable code. The surface-SC scheme achieves more than one order of magnitude increase in the threshold ratio between the loss rate κ1 and the engineered dissipation rate κ2. Under a practical noise ratio κ12 = 10-3, the repetition-SC scheme can reach a 10-15 logical error rate even with a small mean excitation number of 4, which already suffices for practically useful quantum algorithms.« less
  4. Construction of bias-preserving operations for pair-cat codes

    Fault-tolerant quantum computation with depolarization error often requires demanding error threshold and resource overhead. If the operations can maintain high noise bias—dominated by dephasing error with small bit-flip error—we can achieve hardware-efficient fault-tolerant quantum computation with a more favorable error threshold. Distinct from two-level physical systems, multilevel systems (such as harmonic oscillators) can achieve a desirable set of bias-preserving quantum operations while using continuous engineered dissipation or Hamiltonian protection to stabilize to the encoding subspace. For example, cat codes stabilized with driven-dissipation or Kerr nonlinearity can possess a set of bias-preserving gates while continuously correcting bosonic dephasing error. However, catmore » codes are not compatible with continuous quantum error correction against excitation loss error, because it is challenging to continuously monitor the parity to correct photon loss errors. In this work, we generalize the bias-preserving operations to pair-cat codes, which can be regarded as a multimode generalization of cat codes, to be compatible with continuous quantum error correction against both bosonic loss and dephasing errors. In conclusion, our results open the door towards hardware-efficient robust quantum information processing with both bias-preserving operations and continuous quantum error correction simultaneously correcting bosonic loss and dephasing errors.« less
  5. Distributed Quantum Error Correction for Chip-Level Catastrophic Errors

    Quantum error correction holds the key to scaling up quantum computers. Cosmic ray events severely impact the operation of a quantum computer by causing chip-level catastrophic errors, essentially erasing the information encoded in a chip. Here, in this work, we present a distributed error correction scheme to combat the devastating effect of such events by introducing an additional layer of quantum erasure error correcting code across separate chips. We show that our scheme is fault tolerant against chip-level catastrophic errors and discuss its experimental implementation using superconducting qubits with microwave links. Our analysis shows that in state-of-the-art experiments, it ismore » possible to suppress the rate of these errors from 1 per 10 s to less than 1 per month.« less
  6. Infrared-Fused Vision-Based Thermoregulation Performance Estimation for Personal Thermal Comfort-Driven HVAC System Controls

    Thermal comfort is one of the primary factors influencing occupant health, well-being, and productivity in buildings. Existing thermal comfort systems require occupants to frequently communicate their comfort vote via a survey which is impractical as a long-term solution. Here, we present a novel thermal infrared-fused computer vision sensing method to capture thermoregulation performance in a non-intrusive and non-invasive manner. In this method, we align thermal and visible images, detect facial segments (i.e., nose, eyes, face boundary), and accordingly read the temperatures from the appropriate coordinates in the thermal image. We focus on the human face since it is often clearlymore » visible to cameras and is not merged into a hot background (unlike hands). We use a regularized Gaussian Mixture model to track the thermoregulation changes over time and apply a heuristic algorithm to extract hot and cold indices. We present a personalized and a generalized comfort modeling method, selected based on the availability of the occupant historical indices measurements in a neutral environment, and use the time-series of the hot and cold indices to define corrections to HVAC system operations in the form of setpoint constraints. To evaluate the efficacy of our proposed approach in responding to thermal stimuli, we designed a series of controlled experiments to simulate exposure to cold and hot environments. While applying personalized modeling showed an acceptable average accuracy of 91.3%, the generalized model’s average accuracy was only 65.2%. This shows the importance of having access to physiological records in modeling and assessing comfort. We also found that individual differences should be considered in selecting the cooling and heating rates when some knowledge of the occupant’s overall thermal preference is available.« less
  7. Direct Prediction of Phonon Density of States With Euclidean Neural Networks

    Machine learning has demonstrated great power in materials design, discovery, and property prediction. However, despite the success of machine learning in predicting discrete properties, challenges remain for continuous property prediction. The challenge is aggravated in crystalline solids due to crystallographic symmetry considerations and data scarcity. Here, the direct prediction of phonon density-of-states (DOS) is demonstrated using only atomic species and positions as input. Euclidean neural networks are applied, which by construction are equivariant to 3D rotations, translations, and inversion and thereby capture full crystal symmetry, and achieve high-quality prediction using a small training set of ≈ 103 examples with overmore » 64 atom types. The predictive model reproduces key features of experimental data and even generalizes to materials with unseen elements, and is naturally suited to efficiently predict alloy systems without additional computational cost. Furthermore, the potential of the network is demonstrated by predicting a broad number of high phononic specific heat capacity materials. The work indicates an efficient approach to explore materials’ phonon structure, and can further enable rapid screening for high-performance thermal storage materials and phonon-mediated superconductors.« less
  8. Reversible (De)Intercalation of Hydrated Zn2+ in Mg2+ -Stabilized V2O5 Nanobelts with High Areal Capacity

    The rechargeable aqueous zinc ion battery (ZIB) is regarded as one of the most promising candidates for large-scale energy storage applications due to its low-cost and eco-friendly properties. However, the development of a suitable cathode operating with high areal capacity and uncovering the relevant reaction mechanisms remain challenging. Herein, the application of Mg0.26V2O5∙0.73H2O (MVO) nanobelts as a ZIB cathode is demonstrated. In situ FT-IR reveals the shift of OH stretching from 3350 cm-1 to 3200 cm-1, corresponding to the hydration shell of Zn2+, while in situ Raman suggests the interlayer charges creening effect, which would boost the intercalation of hydratedmore » Zn2+. Density function theory reveals that the hydrated Zn2+ can lower the Coulombic repulsion at the electrode-electrolyte interface and circumvents the desolvation penalty of hydrated Zn2+ during the (de)intercalation process. Additionally, excellent structure stability and large interlayer spacing guarantee the highly reversible (de)intercalation of hydrated Zn2+. Therefore, the MVO nanobelts exhibit a high areal capacity of 2.12 mAh cm-2 at 0.05 A g-1, outstanding cycling stability of 2500 cycles at 10 A g-1 with a mass loading of 5 mg cm-2. Finally, it is believed that the use of hydrated intercalation charge carriers will boost further studies in other multivalent rechargeable batteries.« less
  9. Beta gallium oxide (β-Ga2O3) nanoelectromechanical transducer for dual-modality solar-blind ultraviolet light detection

    Empowered by an ultrawide bandgap (Eg = 4.5–4.9 eV), beta gallium oxide (β-Ga2O3) crystal is an ideal material for solar-blind ultraviolet (SBUV, λ < 280 nm) detection. Here, we report on the first demonstration of dual-modality SBUV light sensing integrated in the same device enabled by multi-physics coupling across photo-electrical and photo-thermo-mechanical domains. The specially designed suspended β-Ga2O3 nanoelectromechanical systems (NEMS) transducer reveals dual-modality responses, with a photocurrent responsivity of 4 mA/W and a frequency shift responsivity of 250 Hz/nW, upon SBUV light exposure. An additional demonstration of a β-Ga2O3 photo-field-effect transistor exhibits a boosted responsivity of 63 A/W. Analysismore » on the device suggests that reducing the thickness and length of the transducer could further improve the SBUV light sensing responsivities for both modalities. The demonstration could pave the way for future realization of SBUV detectors with dual modalities for enhanced detection fidelity, or respectively optimized for different sensing scenarios.« less
  10. Ambient Synthesis of Single‐Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds

    Abstract Single‐atom catalysts (SACs) feature the maximum atom economy and superior performance for various catalysis fields, attracting tremendous attention in materials science. However, conventional synthesis of SACs involves high energy consumption at high temperature, complicated procedures, a massive waste of metal species, and poor yields, greatly impeding their development. Herein, a facile dangling bond trapping strategy to construct SACs under ambient conditions from easily accessible bulk metals (such as Fe, Co, Ni, and Cu) is presented. When mixing graphene oxide (GO) slurry with metal foam and drying in ambient conditions, the M 0 would transfer electrons to the dangling oxygenmore » groups on GO, obtaining M δ+ (0 < δ < 3) species. Meanwhile, M δ+ coordinates with the surface oxygen dangling bonds of GO to form MO bonds. Subsequently, the metal atoms are pulled out of the metal foam by the MO bonds under the assistance of sonication to give M SAs/GO materials. This synthesis at room temperature from bulk metals provides a versatile platform for facile and low‐cost fabrication of SACs, crucial for their mass production and practical application in diverse industrial reactions.« less
...

Search for:
All Records
Creator / Author
"Xu, Qian"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization