Multi-Agent Graph-Attention Deep Reinforcement Learning for Post-Contingency Grid Emergency Voltage Control
Grid emergency voltage control (GEVC) is paramount in electric power systems to improve voltage stability and prevent cascading outages and blackouts in case of contingencies. While most deep reinforcement learning (DRL)-based paradigms perform single agents in a static environment, real-world agents for GEVC are expected to cooperate in a dynamically shifting grid. Moreover, due to high uncertainties from combinatory natures of various contingencies and load consumption, along with the complexity of dynamic grid operation, the data efficiency and control performance of the existing DRL-based methods are challenged. To address these limitations, we propose a multi-agent graph-attention (GATT)-based DRL algorithm formore »