DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Comparison of unirradiated and irradiated AGR-2 TRISO fuel particle oxidation response

    The silicon carbide (SiC) coating in a tristructural isotropic (TRISO) particle acts as a barrier to fission product release during reactor operation and accident scenarios. Oxidation and subsequent failure of the SiC layer during a rare air ingress event is a proposed mechanism for fission product release in a high-temperature gas-cooled reactor (HTGR). Although previous oxidation studies have analyzed unirradiated TRISO particle response, this study compared the oxidation behavior of irradiated and unirradiated TRISO particles from the second Advanced Gas Reactor Fuel Development and Qualification Program irradiation experiment (AGR-2). Particles with exposed SiC were subjected to six varying oxidizing testsmore » in the Furnace for Irradiated TRISO Testing (FITT), examined for failure fraction with the Irradiated Microsphere Gamma Analyzer (IMGA) and characterized with focused ion beam and scanning/transmission electron microscopy techniques to analyze the oxide layer. Uncorrelated unirradiated particle failures throughout the series of exposures suggests that external factors inherent to the experiment increased particle failure sensitivity. However, irradiated particle observations indicated an increased failure response at 400 h 1400 °C in both 2% and 21% O2 atmospheres above failure associated with external factors. Oxide thickness measurements after 400 h at 1400 °C revealed a greater oxidation rate than predicted by parabolic growth, which was attributed to the increased complexity of the oxide structure at longer exposure times. Altering the atmosphere from 21% to 2% O2 reduced the average oxide thickness by approximately 12%–14% in both irradiated and unirradiated particles at 400 h 1400 °C. Altogether, the minor variations observed between irradiated and unirradiated particles in this study led to the conclusion that unirradiated TRISO particles can be used to approximate irradiated TRISO oxidation kinetics.« less
  2. Microstructure of irradiated AGR TRISO particle buffer layers as measured by X-ray computed tomography

    Shrinkage of the initially low-density buffer layer in tristructural isotropic (TRISO) coated fuel particles during irradiation is a well-known phenomenon with potential implications for fission product and actinide transport, as well as potential pyrocarbon fracture that in some cases has been observed to impact particle performance. During post-irradiation examination, the buffer layer's structure is commonly determined using 2D microscopy of a particle cross section or a series of particle cross sections at staggered depths. Although these methods provide a general idea of the irradiated buffer microstructure, they do not provide a full picture of the TRISO coating microstructure. By contrast,more » x-ray computed tomography (XCT) provides full 3D imaging of the TRISO particle. Particles from various compacts irradiated for the Advanced Gas Reactor Fuel Development and Qualification Program were imaged using XCT. Some of these particles were selected because of abnormal fission product inventories (e.g., low 137Cs), whereas others were randomly selected from the center of the fission product inventory distribution. Qualitative and quantitative analysis techniques were applied to the randomly selected particles as representatives of typical TRISO behavior to study the post-irradiation structure of the buffer layer. These results showed that, while separation of the buffer and inner pyrolytic carbon layers was a common behavior during the radiation-induced shrinkage of the buffer, a portion of the original buffer/inner pyrolytic carbon interface remained intact throughout irradiation in nearly all cases. Furthermore, these results also indicated clear trends in the degree of buffer densification with irradiation temperature and fluence.« less

Search for:
All Records
Creator / Author
"Skitt, Darren J."

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization