Effect of Nonunital Noise on Random-Circuit Sampling
In this work, drawing inspiration from the type of noise present in real hardware, we study the output distribution of random quantum circuits under practical nonunital noise sources with constant noise rates. We show that even in the presence of unital sources such as the depolarizing channel, the distribution, under the combined noise channel, never resembles a maximally entropic distribution at any depth. To show this, we prove that the output distribution of such circuits never anticoncentrates—meaning that it is never too “flat”—regardless of the depth of the circuit. This is in stark contrast to the behavior of noiseless randommore »