DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Earth's record-high greenness and its attributions in 2020

    Terrestrial vegetation is a crucial component of Earth's biosphere, regulating global carbon and water cycles and contributing to human welfare. Despite an overall greening trend, terrestrial vegetation exhibits a significant inter-annual variability. The mechanisms driving this variability, particularly those related to climatic and anthropogenic factors, remain poorly understood, which hampers our ability to project the long-term sustainability of ecosystem services. Here, in this work, by leveraging diverse remote sensing measurements, we pinpointed 2020 as a historic landmark, registering as the greenest year in modern satellite records from 2001 to 2020. Using ensemble machine learning and Earth system models, we foundmore » this exceptional greening primarily stemmed from consistent growth in boreal and temperate vegetation, attributed to rising CO2 levels, climate warming, and reforestation efforts, alongside a transient tropical green-up linked to the enhanced rainfall. Contrary to expectations, the COVID-19 pandemic lockdowns had a limited impact on this global greening anomaly. Our findings highlight the resilience and dynamic nature of global vegetation in response to diverse climatic and anthropogenic influences, offering valuable insights for optimizing ecosystem management and informing climate mitigation strategies.« less
  2. Hysteresis area at the canopy level during and after a drought event in the Central Amazon

    Understanding forest water limitation during droughts within a warming climate is essential for accurate predictions of forest-climate interactions. In hyperdiverse ecosystems like the Amazon forest, the mechanisms shaping hysteresis patterns in transpiration relative to environmental factors are not well understood. From this perspective, we investigated these dynamics by conducting in situ leaf-level measurements throughout and after the 2015 El Niño-Southern Oscillation (ENSO) drought. Our findings indicate a substantial increase in the hysteresis area (Harea) among transpiration (E), vapor pressure deficit (VPD), and stomatal conductance (gs) at canopy level during the ENSO peak, attributed to both temporal lag and differences inmore » magnitude between gs and VPD peaks. Specifically, the canopy species Pouteria anomala exhibited an increased Harea, due to earlier maximum gs rates leading to a greater temporal lag with VPD compared to the post-drought period. Additionally, leaf water potential (ψL) and canopy temperature (Tcanopy) showed larger Harea during the ENSO peak compared to post-drought conditions across all studied species, suggesting that stomatal closure, particularly during the afternoon, acts to minimize water loss and may explain the counterclockwise hysteresis observed between ψL and Tcanopy. Here, the pronounced Harea during the drought points to a potential imbalance between water supply and demand, underlining the role of stomatal behavior of isohydric species in response to drought.« less
  3. Exploring the role of biotic factors in regulating the spatial variability in land surface phenology across four temperate forest sites

    Here, land surface phenology (LSP), the characterization of plant phenology with satellite data, is essential for understanding the effects of climate change on ecosystem functions. Considerable LSP variation is observed within local landscapes, and the role of biotic factors in regulating such variation remains underexplored. In this study, we selected four National Ecological Observatory Network terrestrial sites with minor topographic relief to investigate how biotic factors regulate intra-site LSP variability. We utilized plant functional type (PFT) maps, functional traits, and LSP data to assess the explanatory power of biotic factors for the start and end of season (SOS and EOS)more » variability. Our results indicate that PFTs alone explain only 0.8–23.4% of intra-site SOS and EOS variation, whereas including functional traits significantly improves explanatory power, with cross-validation correlations ranging from 0.50 to 0.85. While functional traits exhibited diverse effects on SOS and EOS across different sites, traits related to competitive ability and productivity were important for explaining both SOS and EOS variation at these sites. These findings reveal that plants exhibit diverse phenological responses to comparable environmental conditions, and functional traits significantly contribute to intra-site LSP variability, highlighting the importance of intrinsic biotic properties in regulating plant phenology.« less
  4. The underappreciated importance of solar radiation in constraining spring phenology of temperate ecosystems in the Northern and Eastern United States

    Spring phenology of temperate ecosystems is highly sensitive to climate change, generating various impacts on many important terrestrial surface biophysical processes. Although various prognostic models relying on environmental variables of temperature and photoperiod have been developed for spring phenology, comprehensive ecosystem-scale evaluations over large landscapes and long-time periods remain lacking. Further, environmental variables other than temperature and photoperiod might also importantly constrain spring phenology modelling but remain under-investigation. To address these issues, we leveraged around 20-years datasets of environmental variables (from Daymet and GLDAS products) and the spring phenology metric (i.e., the greenup date) respectively derived from MODIS and PhenoCamsmore » across 108 sites in the Northern and Eastern United States. We firstly cross-compared MODIS-derived greenup date with official PhenoCams product with high accuracy (R2 = 0.70). Then, we evaluated the three prognostic models (i.e., Growing Degree Date (GDD), Sequential (SEQ) and optimality-based (OPT)) with MODIS-derived spring phenology, assessed the model residuals and their associations with soil moisture, rainfall, and solar radiation, and revised the two photoperiod-relevant models (SEQ, OPT) by replacing the daylength variable with solar radiation, which was found to contribute the most to model residuals. We found that 1) all models demonstrated good capability in characterizing spring phenology, with OPT performing the best (RMSE = 8.04 ± 5.05 days), followed by SEQ (RMSE = 10.57 ± 7.77 days) and GDD (RMSE = 10.84 ± 8.42 days), 2) all models displayed high model residuals showing tight correlation with solar radiation (r = 0.45–0.75), and 3) the revised models that included solar radiation significantly performed better with an RMSE reduction by 22.08%. Such results are likely because solar radiation better constrains early growing season plant photosynthesis than photoperiod, supporting the hypothesis of spring phenology as an adaptive strategy to maximize photosynthetic carbon gain (approximated by solar radiation) while minimizing frost damage risk (captured by temperature). Collectively, our study here reveals the underappreciated importance of solar radiation in constraining spring phenology of temperate ecosystems, and suggests ways to improve spring phenology modelling and other phenology-related ecological processes.« less
  5. Artificial light at night: an underappreciated effect on phenology of deciduous woody plants

    Artificial light at night (ALAN), an increasing anthropogenic driver, is widespread and shows rapid expansion with potential adverse impact on the terrestrial ecosystem. However, whether and to what extent does ALAN affect plant phenology, a critical factor influencing the timing of terrestrial ecosystem processes, remains unexplored due to limited ALAN observation. Here, we used the Black Marble ALAN product and phenology observations from USA National Phenology Network to investigate the impact of ALAN on deciduous woody plants phenology in the conterminous United States. We found that (1) ALAN significantly advanced the date of breaking leaf buds by 8.9 ± 6.9 daysmore » (mean ± SD) and delayed the coloring of leaves by 6.0 ± 11.9 days on average; (2) the magnitude of phenological changes was significantly correlated with the intensity of ALAN (P < 0.001); and (3) there was an interaction between ALAN and temperature on the coloring of leaves, but not on breaking leaf buds. We further showed that under future climate warming scenarios, ALAN will accelerate the advance in breaking leaf buds but exert a more complex effect on the coloring of leaves. This study suggests intensified ALAN may have far-reaching but underappreciated consequences in disrupting key ecosystem functions and services, which requires an interdisciplinary approach to investigate. Developing lighting strategies that minimize the impact of ALAN on ecosystems, especially those embedded and surrounding major cities, is challenging but must be pursued.« less
  6. Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the Central Amazon during the 2015–16 El Niño drought

    Transpiration is often considered to be light- but not water-limited in humid tropical rainforests due to abundant soil water, even during the dry seasons. The record-breaking 2015–16 El Niño drought provided a unique opportunity to examine whether transpiration is constrained by water under severe lack of rainfall. We measured sap velocity, soil water content, and meteorological variables in an old-growth upland forest in the Central Amazon throughout the 2015–16 drought. We found a rapid decline in sap velocity (-38 ± 21%, mean ± SD.) and in its temporal variability (-88%) during the drought compared to the wet season. Such changesmore » were accompanied by a marked decline in soil moisture and an increase in temperature and vapor pressure deficit. Sap velocity was largely limited by net radiation during the wet and normal dry seasons; however, it shifted to be primarily limited by soil moisture during the drought. The threshold in which sap velocity became dominated by soil moisture was at 0.33 m3 m-3 (around -150 kPa in soil matric potential), below which sap velocity dropped steeply. Our study provides evidence for a soil water threshold on transpiration in a moist tropical forest, suggesting a shift from light limitation to water limitation under future climate characterized by increased temperature and an increased frequency, intensity, duration and extent of extreme drought events.« less
  7. Evaluation and modification of ELM seasonal deciduous phenology against observations in a southern boreal peatland forest

    Phenological transitions determine the timing of changes in land surface properties and the seasonality of exchanges of biosphere-atmosphere energy, water, and carbon. Accurate mechanistic modeling of phenological processes is therefore critical to understand and correctly predict terrestrial ecosystem feedbacks with changing atmospheric and climate conditions. However, the phenological components in the land model of the US Department of Energy's (DOE) Energy Exascale Earth System Model (ELM of E3SM) were previously unable to accurately capture the observed phenological responses to environmental conditions in a well-studied boreal peatland forest. In this research, we introduced new seasonal-deciduous phenology schemes into version 1.0 ofmore » ELM and evaluated their performance against the PhenoCam observations at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment in northern Minnesota from 2015 to 2018. We found that phenology simulated by the revised ELM (i.e., earlier spring onsets and stronger warming responses of spring onsets and autumn senescence) was closer to observations than simulations from the original algorithms for both the deciduous conifer (Larix laricina) and mixed shrub layers. Moreover, the revised ELM generally produced higher carbon and water fluxes (e.g., photosynthesis and evapotranspiration) during the growing season and stronger flux responses to warming than the default ELM. A parameter sensitivity analysis further indicated the significant contribution of phenology parameters to uncertainty in key carbon and water cycle variables, underscoring the importance of precise phenology parameterization. Furthermore, this phenological modeling effort demonstrates the potential to enhance the E3SM representation of land-climate interactions at broader spatiotemporal scales, especially under anticipated elevated CO2 and warming conditions.« less
  8. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO2

    Mosses need to be incorporated into Earth system models to better simulate peatland functional dynamics under the changing environment. Sphagnum mosses are strong determinants of nutrient, carbon, and water cycling in peatland ecosystems. However, most land-surface models do not include Sphagnum or other mosses as represented plant functional types (PFTs), thereby limiting predictive assessment of peatland responses to environmental change. In this study, we introduce a moss PFT into the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. The model was parameterized and independently evaluatedmore » against observations from an ombrotrophic forested bog as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project. The inclusion of a Sphagnum PFT with some Sphagnum-specific processes in ELM allows it to capture the observed seasonal dynamics of Sphagnum gross primary production (GPP) albeit with an underestimate of peak GPP. The model simulated a reasonable annual net primary production (NPP) for moss but with less interannual variation than observed, and it reproduced aboveground biomass for tree PFTs and stem biomass for shrubs. Different species showed highly variable warming responses under both ambient and elevated atmospheric CO2 concentrations, and elevated CO2 altered the warming response direction for the peatland ecosystem. Microtopography is critical: Sphagnum mosses on hummocks and hollows were simulated to show opposite warming responses (NPP decreasing with warming on hummocks but increasing in hollows), and hummock Sphagnum was modeled to have a strong dependence on water table height. The inclusion of this new moss PFT in global ELM simulations may provide a useful foundation for the investigation of northern peatland carbon exchange, enhancing the predictive capacity of carbon dynamics across the regional and global scales.« less
  9. Deciphering the mechanism of near-threshold $$J/\psi $$ photoproduction

    The photoproduction of the $$J/\psi $$ off the proton is believed to deepen our understanding of various physics issues. On the one hand, it is proposed to provide access to the origin of the proton mass, based on the QCD multipole expansion. On the other hand, it can be employed in a study of pentaquark states. The process is usually assumed to proceed through vector-meson dominance, that is the photon couples to a $$J/\psi $$ which rescatters with the proton to give the $$J/\psi $$p final state. In this paper, we provide a compelling hint for and propose measurements necessarymore » to confirm a novel production mechanism via the ΛcD¯(*) intermediate states. In particular, there must be cusp structures at the ΛcD¯(*) thresholds in the energy dependence of the $$J/\psi $$ photoproduction cross section. The same mechanism also implies the $$J/\psi $$-nucleon scattering lengths of order 1 mfm. Given this, one expects only a minor contribution of charm quarks to the nucleon mass.« less
  10. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming

    Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere– atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980–2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europemore » (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod-induced shifts in spring leaf-out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf-out and advancing late leaf-out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf-out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect.« less
...

Search for:
All Records
Creator / Author
"Meng, Lin"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization