DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Influence of temperature, oxygen partial pressure, and microstructure on the high-temperature oxidation behavior of the SiC Layer of TRISO particles

    Tristructural isotropic (TRISO)-coated fuel particles are designed for use in high-temperature gas-cooled nuclear reactors, featuring a structural SiC layer that may be exposed to oxygen-rich environments over 1000 °C. Surrogate TRISO particles were tested in 0.2–20 kPa O2 atmospheres to observe the differences in oxidation behavior. Oxide growth mechanisms remained consistent from 1200–1600 °C for each PO$$_2$$, with activation energies of 228 ± 7 kJ/mol for 20 kPa O2 and 188 ± 8 kJ/mol for 0.2 kPa O2. At 1600 °C, kinetic analysis revealed a change in oxide growth mechanisms between 0.2 and 6 kPa O2. In 0.2 kPa O2,more » oxidation produced raised oxide nodules on pockets with nanocrystalline SiC. Oxidation mechanisms were determined using Atom probe tomography. Active SiC oxidation occurred in C-rich grain boundaries with low PO$$_2$$, leading to SiO2 buildup in porous nodules. Here, this phenomenon was not observed at any temperature in 20 kPa O2 environments.« less
  2. High-temperature oxidation behavior of the SiC layer of TRISO particles in low-pressure oxygen

    Abstract Surrogate tristructural‐isotropic (TRISO)‐coated fuel particles were oxidized in 0.2 kPa O 2 at 1200–1600°C to examine the behavior of the SiC layer and understand the mechanisms. The thickness and microstructure of the resultant SiO 2 layers were analyzed using scanning electron microscopy, focused ion beam, and transmission electron microscopy. The majority of the surface comprised smooth, amorphous SiO 2 with a constant thickness indicative of passive oxidation. The apparent activation energy for oxide growth was 188 ± 8 kJ/mol and consistent across all temperatures in 0.2 kPa O 2 . The relationship between activation energy and oxidation mechanism is discussed. Raised nodules of porous,more » crystalline SiO 2 were dispersed across the surface, suggesting that active oxidation and redeposition occurred in those locations. These nodules were correlated with clusters of nanocrystalline SiC grains, which may facilitate active oxidation. These findings suggest that microstructural inhomogeneities such as irregular grain size influence the oxidation response of the SiC layer of TRISO particles and may influence their accident tolerance.« less
  3. Oxide evolution on the SiC layer of TRISO particles during extended air oxidation

    Tristructural isotropic (TRISO) fuel particles have been primarily developed for high-temperature gas-cooled nuclear reactors and can be subjected to oxidizing environments for extended periods in an off-normal accident scenario. Surrogate TRISO fuel particles were oxidized in air at 1,000 or 1,100 °C for up to 120 h. Here, the oxide scale morphology and thickness were studied via scanning electron microscopy, focused ion beam, and atomic force microscopy. TRISO particles oxidized at 1,100 °C exhibited a highly crystalline oxide scale, which led to significant cracking and irregularly shaped closed porosity, whereas those oxidized at 1,000 °C possessed a primarily amorphous oxidemore » scale, which contained small, rounded internal pores and no larger defects. The observed phenomena deviated from the expected behavior based on models for oxide growth on flat-plate and fiber SiC. The oxidation kinetics of TRISO fuel particles in high-temperature air were investigated without mechanically deforming the surface and were analyzed with respect to oxide morphology.« less

Search for:
All Records
Creator / Author
"Jalan, Visharad"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization