DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Competitive and cooperative effects of chloride on palladium(II) adsorption to iron (oxyhydr)oxides: Implications for mobility during weathering

    In surface and near-surface weathering environments, the mobilization and partial loss of palladium (Pd) under oxidizing and weakly acidic conditions has been attributed to aqueous chloride complexation. However, prior work has also observed that a portion of Pd is retained by iron (oxyhydr)oxides in the weathering zone. The effect chloride has on the relative amount of Pd mobilization versus retention by iron (oxyhydr)oxides is currently unclear. We studied the effect of chloride complexation on Pd(II) adsorption to two iron (oxyhydr)oxides, hematite and 2-line ferrihydrite, at pH 4. Increasing chloride concentration suppresses Pd adsorption for both hematite and ferrihydrite, which displaymore » similar binding affinities under the conditions studied. Thermodynamic modeling of aqueous Pd speciation indicates that greater suppression of binding to iron (oxyhydr)oxides should occur than is observed because of the strength of Pd-Cl complexation, implying that additional interactions at the mineral surface are counteracting this effect. While increasing dissolved chloride concentration does not measurably impact mineral surface charging, extended X-ray absorption fine structure (EXAFS) spectra indicate that ternary Pd-Cl surface complexes form on both hematite and ferrihydrite. The number of Cl ligands in the surface species increase at greater chloride concentration. A mixture of bidentate and monodentate surface species are indicated by the EXAFS spectra, although the fitting uncertainties precludes determining whether these vary in relative abundance with chloride concentration. In order to offset the effect of strong aqueous Pd-Cl complexation and align with our EXAFS results, a surface complexation model developed for Pd adsorption to hematite involves a mixture of three ternary surface complexes containing 1, 2, and 3 chloride ligands. Our results show that Pd is mobilized as a chloride complex in platinum group element-rich weathering zones. As a result, porewater chloride concentrations are thus a dominant control on Pd retention by iron (oxyhydr)oxides in these weakly acidic environments.« less
  2. Adsorption of Neodymium, Dysprosium, and Ytterbium to Goethite under Varying Aqueous Chemistry Conditions

    The adsorption of rare earth elements (REEs) to iron oxides can regulate the mobility of REEs in the environment and is heavily influenced by water chemistry. This study utilized batch experiments to examine the adsorption of Nd, Dy, and Yb to goethite under varying pH, electrolyte (type and concentration), and concentrations of dissolved inorganic carbon and citrate. REE adsorption was strongly influenced by pH, with an increase from essentially no adsorption at pH 3.0 to nearly complete adsorption at pH 6.5 and higher. Citrate enhanced the adsorption of REEs at low pH (<5.0), likely by forming goethite-REE-citrate ternary surface complexes.more » However, citrate inhibited the adsorption of REEs at higher pH (>5.0) by forming aqueous REE-citrate complexes. Ionic strength had a small influence on REE adsorption, and the presence of dissolved inorganic carbon had no discernible effect. Equilibrium adsorption was interpreted with a triple-layer surface complexation model (SCM). The selection of surface complexation reactions was guided by extended X-ray absorption fine structure spectra. An SCM with a single bidentate inner-sphere surface complexation reaction for Nd and two inner-sphere surface complexation reactions (one monodentate and one bidentate reaction) for Dy and Yb effectively simulated adsorption across a broad range of conditions in the absence of citrate. Accounting for the effects of citrate on REE adsorption required the addition of up to two ternary REE-citrate-goethite surface complexes. The SCM can enable predictions of REE transport in subsurface environments that have goethite as an important adsorbent mineral. Furthermore, this predictive capability could contribute to identifying potential REE sources and facilitating efficient extraction of REEs.« less
  3. Fate of arsenic during the interactions between Mn-substituted goethite and dissolved Fe(II)

    Geogenic arsenic has become a globally-distributed groundwater contaminant, liberated from the weathering of arsenic-bearing sulfide minerals and often transported to aquifer sediments adsorbed to iron oxides. Among the iron oxides, goethite (α-FeOOH) is uniquely important for the fate of arsenic because of its widespread abundance, stability, and high affinity for binding arsenic. Goethite is ubiquitous in soils and sediments and often contains substituted elements, including manganese. Structural manganese may affect the surface reactivity and redox capacity of goethite and alter the mechanisms of recrystallization catalyzed by dissolved Fe(II), potentially affecting arsenic adsorption. Here, this study examined the fate of As(V)more » during the interactions between dissolved Fe(II) and Mn-substituted goethites at pH 4 and 7 as well as associated changes in arsenic speciation. At pH 7, the addition of dissolved Fe(II) initially increases the adsorption of As(V) onto Mn-bearing and Mn-free goethites. For the Mn-substituted goethites, the adsorbed As(V) slowly releases to solution at longer aging times. Fe(II) addition at pH 4 slightly increases As(V) uptake by Mn-substituted goethites, with differences in total sorption correlating with the Mn content in goethite. The addition of Fe(II) releases substantial dissolved manganese but the amount solubilized is higher at pH 4 compared to 7, suggesting that the presence of adsorbed As(V) may substantially promote the Mn release at pH 4. X-ray absorption fine structure spectroscopy shows that arsenic is stabilized as As(V) in all the samples and adsorbed on goethite via a bidentate binuclear mechanism. Fitting results show that the binding distance and coordination numbers are stable in Mn-free goethite and Mn-substituted goethite samples; the effect of substituted Mn on the surface complex structure is minor. High resolution transmission electron microscopy and X-ray diffraction confirm that no secondary ferrous arsenate minerals precipitate under both pH conditions. This study improves our understanding of the Fe(II)-As(V) interactions on iron oxides, and demonstrates that the substituted cations such as manganese may quantitatively alter the geochemical fate of arsenic during the reaction of dissolved Fe(II) with Fe(III) oxides.« less
  4. Aqueous Co removal by mycogenic Mn oxides from simulated mining wastewaters

    Naturally occurring manganese (Mn) oxide minerals often form by microbial Mn(II) oxidation, resulting in nanocrystalline Mn(III/IV) oxide phases with high reactivity that can influence the uptake and release of many metals (e.g., Ni, Cu, Co, and Zn). During formation, the structure and composition of biogenic Mn oxides can be altered in the presence of other metals, which in turn affects the minerals’ ability to bind these metals. These processes are further influenced by the chemistry of the aqueous environment and the type and physiology of microorganisms involved. Conditions extending to environments that typify mining and industrial wastewaters (e.g., increased saltmore » content, low nutrient, and high metal concentrations) have not been well investigated thus limiting the understanding of metal interactions with biogenic Mn oxides. By integrating geochemistry, microscopic, and spectroscopic techniques, we examined the capacity of Mn oxides produced by the Mn(II)-oxidizing Ascomycete fungus Periconia sp. SMF1 isolated from the Minnesota Soudan Mine to remove the metal co-contaminant Co(II) from synthetic waters that are representative of mining wastewaters currently undergoing remediation efforts. We compared two different applied remediation strategies under the same conditions: coprecipitation of Co with mycogenic Mn oxides versus adsorption of Co with pre-formed fungal Mn oxides. Co(II) was effectively removed from solution by fungal Mn oxides through two different mechanisms: incorporation into, and adsorption onto, Mn oxides. These mechanisms were similar for both remediation strategies, indicating the general effectiveness of Co(II) removal by these oxides. The mycogenic Mn oxides were primarily a nanoparticulate, poorly-crystalline birnessite-like phases with slight differences depending on the chemical conditions during formation. The relatively fast and complete removal of aqueous Co(II) during biomineralization as well as the subsequent structural incorporation of Co into the Mn oxide structure illustrated a sustainable cycle capable of continuously remediating Co(II) from metal-polluted environments.« less
  5. Copper availability governs nitrous oxide accumulation in wetland soils and stream sediments

    Denitrification is microbially-mediated through enzymes containing metal cofactors. Laboratory studies of pure cultures have highlighted that the availability of Cu, required for the multicopper enzyme nitrous oxide reductase, can limit N2O reduction. However, in natural aquatic systems, such as wetlands and hyporheic zones in stream beds, the role of Cu in controlling denitrification remains incompletely understood. In this study, we collected soils and sediments from three natural environments -- riparian wetlands, marsh wetlands, and a stream -- to investigate their nitrogen species transformation activity at background Cu levels and different supplemented Cu loadings. All of the systems contained solid-phase associatedmore » Cu below or around geological levels (40 - 280 nmol g-1) and exhibited low dissolved Cu (3-50 nM), which made them appropriate sites for evaluating the effect of limited Cu availability on denitrification. In laboratory incubation experiments, high concentrations of N2O accumulated in all microcosms lacking Cu amendment except for one stream sediment sample. With Cu added to provide dissolved concentrations at trace levels (10-300 nM), reduction rate of N2O to N2 in the wetland soils and stream sediments was enhanced. A kinetic model could account for the trends in nitrogen species by combining the reactions for microbial reduction of NO3- to NO2-/N2O/N2 and abiotic reduction of NO2- to N2. The model revealed that the rate of N2O to N2 conversion increased significantly in the presence of Cu. For riparian wetland soils and stream sediments, the kinetic model also suggested that overall denitrification is driven by abiotic reduction of NO2- in the presence of inorganic electron donors. This study demonstrated that natural aquatic systems containing Cu at concentrations less than or equal to crustal abundances may display incomplete reduction of N2O to N2 that would cause N2O accumulation and release to the atmosphere.« less
  6. Consistent Controls on Trace Metal Micronutrient Speciation in Wetland Soils and Stream Sediments

    Trace metal are essential for microbially-mediated biogeochemical processes occurring in anoxic wetland soils and stream bed sediments, but low availability of these elements may inhibit anaerobic element cycling and transformations. Solid-phase speciation is likely a critical control on trace metal availability but has seen limited study in anoxic systems having concentrations similar to geological background levels, where metal limitations may be most prevalent. We have investigated trace metal concentrations and solid-phase speciation in three freshwater subsurface aquatic systems: marsh wetland soils, riparian wetland soils, and the sediments of a streambed. These systems displayed low solid-phase trace metal concentrations, generally atmore » or below geological background levels, which generally followed the trend Zn > Cu ≈ Ni > Co and showed no correlation with major element compositions. All soils and sediments were dominated by quartz but varied in clay mineralogy as well as the organic matter, total sulfur, and total iron contents. X-ray absorption near-edge structure (XANES) spectroscopy shows that sulfur speciation in both wetlands is dominated by organic sulfur. Elemental sulfur and iron sulfides together made up <25% of the sulfur in the wetland soils, but the distribution between inorganic and organic forms was reversed in the stream sediments. Ferrous and ferric iron in clay minerals were common species identified by both XANES and extended X-ray absorption fine structure (EXAFS) spectroscopies at all sites. Iron(III) oxides were substantial components in all but the marsh wetland soils. Quantitative analysis of copper, nickel, and zinc XANES spectra revealed similar metal speciation across all sites. Copper speciation was dominated by sulfides, adsorbed species, and minor amounts of copper bound to organic matter; no metallic copper was detected. Nickel speciation also varied little and was dominated by nickel in clay mineral octahedral sheets and nickel sulfide, with adsorbed species also present. Zinc speciation was slightly more varied, with the marsh wetland soils and stream bed sediments containing adsorbed species, zinc associated with clay mineral structures, and zinc bound to reduced sulfur groups on organic matter, whereas the riparian wetland soils lacked clay-associated zinc but contained zinc sulfide. Trace metals bound to reduced sulfur occurred at every site, with a greater sulfur-bound fraction for copper. The fractional abundance of sulfur-bound species showed no relationship with soil or sediment total sulfur content, which varied by two orders of magnitude. More broadly, the observations in this study suggest that trace metal speciation in freshwater wetland soils and stream sediments is consistently dominated by a small set of recurring components which are distinct for each metal. Furthermore, this may represent a general geochemical phenomenon in anoxic soils and sediments containing trace metals at background concentrations (as low as 3 µg g-1) that was not predicted from systems that are contaminated with or naturally-enriched in copper, nickel, or zinc.« less
  7. Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite

    During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. As such, the present study explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurallymore » incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.« less
  8. Competitive and Cooperative Effects during Nickel Adsorption to Iron Oxides in the Presence of Oxalate

    Iron oxides are ubiquitous in soils and sediments and play a critical role in the geochemical distribution of trace elements and heavy metals via adsorption and coprecipitation. The presence of organic acids may potentially alter how metals associate with iron oxide minerals through a series of cooperative or competitive processes: solution complexation, ternary surface complexation, and surface site competition. The macroscopic and molecular-scale effects of these processes were investigated for Ni adsorption to hematite and goethite at pH 7 in the presence of oxalate. The addition of this organic acid suppresses Ni uptake on both minerals. Aqueous speciation suggests thatmore » this is dominantly the result of oxalate complexing and solubilizing Ni. Comparison of the Ni surface coverage to the concentration of free (uncomplexed) Ni2+ in solution suggests that the oxalate also alters Ni adsorption affinity. EXAFS and ATR-FTIR spectroscopies indicate that these changes in binding affinity are due to the formation of Ni–oxalate ternary surface complexes. Here, these observations demonstrate that competition between dissolved oxalate and the mineral surface for Ni overwhelms the enhancement in adsorption associated with ternary complexation. Oxalate thus largely enhances Ni mobility, thereby increasing micronutrient bioavailability and inhibiting contaminant sequestration.« less
  9. Structural response of phyllomanganates to wet aging and aqueous Mn(II)

    Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less

Search for:
All Records
Creator / Author
"Flynn, Elaine D."

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization