DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. On the universality of Sn-equivariant k-body gates

    The importance of symmetries has recently been recognized in quantum machine learning from the simple motto: if a task exhibits a symmetry (given by a group $$\mathfrak{G}$$), the learning model should respect said symmetry. This can be instantiated via $$\mathfrak{G}$$-equivariant quantum neural networks (QNNs), i.e. parametrized quantum circuits whose gates are generated by operators commuting with a given representation of $$\mathfrak{G}$$. In practice, however, there might be additional restrictions to the types of gates one can use, such as being able to act on at most k qubits. In this work we study how the interplay between symmetry and k-bodynessmore » in the QNN generators affect its expressiveness for the special case of $$\mathfrak{G}=S_n$$, the symmetric group. Our results show that if the QNN is generated by one- and two-body Sn-equivariant gates, the QNN is semi-universal but not universal. That is, the QNN can generate any arbitrary special unitary matrix in the invariant subspaces, but has no control over the relative phases between them. Then, we show that in order to reach universality one needs to include n-body generators (if n is even) or ($n-1$)-body generators (if n is odd). As such, our results brings us a step closer to better understanding the capabilities and limitations of equivariant QNNs.« less
  2. On the practical usefulness of the Hardware Efficient Ansatz

    Variational Quantum Algorithms (VQAs) and Quantum Machine Learning (QML) models train a parametrized quantum circuit to solve a given learning task. The success of these algorithms greatly hinges on appropriately choosing an ansatz for the quantum circuit. Perhaps one of the most famous ansatzes is the one-dimensional layered Hardware Efficient Ansatz (HEA), which seeks to minimize the effect of hardware noise by using native gates and connectives. The use of this HEA has generated a certain ambivalence arising from the fact that while it suffers from barren plateaus at long depths, it can also avoid them at shallow ones. Inmore » this work, we attempt to determine whether one should, or should not, use a HEA. We rigorously identify scenarios where shallow HEAs should likely be avoided (e.g., VQA or QML tasks with data satisfying a volume law of entanglement). More importantly, we identify a Goldilocks scenario where shallow HEAs could achieve a quantum speedup: QML tasks with data satisfying an area law of entanglement. We provide examples for such scenario (such as Gaussian diagonal ensemble random Hamiltonian discrimination), and we show that in these cases a shallow HEA is always trainable and that there exists an anti-concentration of loss function values. Our work highlights the crucial role that input states play in the trainability of a parametrized quantum circuit, a phenomenon that is verified in our numerics.« less
  3. Effects of noise on the overparametrization of quantum neural networks

    Overparametrization is one of the most surprising and notorious phenomena in machine learning. Recently, there have been several efforts to study if, and how, quantum neural networks (QNNs) acting in the absence of hardware noise can be overparametrized. In particular, it has been proposed that a QNN can be defined as overparametrized if it has enough parameters to explore all available directions in state space. That is, if the rank of the quantum Fisher information matrix (QFIM) for the QNN's output state is saturated. Here, we explore how the presence of noise affects the overparametrization phenomenon. Our results show thatmore » noise can “turn on” previously zero eigenvalues of the QFIM. This enables the parametrized state to explore directions that were otherwise inaccessible, thus potentially turning an overparametrized QNN into an underparametrized one. For small noise levels, the QNN is quasioverparametrized, as large eigenvalues coexists with small ones. Then, we prove that as the magnitude of noise increases all the eigenvalues of the QFIM become exponentially suppressed, indicating that the state becomes insensitive to any change in the parameters. As such, there is a pull-and-tug effect where noise can enable new directions but also suppress the sensitivity to parameter updates. Finally, our results imply that current QNN capacity measures are ill-defined when hardware noise is present.« less
  4. A semi-agnostic ansatz with variable structure for variational quantum algorithms

    Quantum machine learning—and specifically Variational Quantum Algorithms (VQAs)—offers a powerful, flexible paradigm for programming near-term quantum computers, with applications in chemistry, metrology, materials science, data science, and mathematics. Here, one trains an ansatz, in the form of a parameterized quantum circuit, to accomplish a task of interest. However, challenges have recently emerged suggesting that deep ansatzes are difficult to train, due to flat training landscapes caused by randomness or by hardware noise. This motivates our work, where we present a variable structure approach to build ansatzes for VQAs. Our approach, called VAns (Variable Ansatz), applies a set of rules tomore » both grow and (crucially) remove quantum gates in an informed manner during the optimization. Consequently, VAns is ideally suited to mitigate trainability and noise-related issues by keeping the ansatz shallow. We employ VAns in the variational quantum eigensolver for condensed matter and quantum chemistry applications, in the quantum autoencoder for data compression and in unitary compilation problems showing successful results in all cases.« less
  5. Theoretical guarantees for permutation-equivariant quantum neural networks

    Despite the great promise of quantum machine learning models, there are several challenges one must overcome before unlocking their full potential. For instance, models based on quantum neural networks (QNNs) can suffer from excessive local minima and barren plateaus in their training landscapes. Recently, the nascent field of geometric quantum machine learning (GQML) has emerged as a potential solution to some of those issues. The key insight of GQML is that one should design architectures, such as equivariant QNNs, encoding the symmetries of the problem at hand. Here, we focus on problems with permutation symmetry (i.e., symmetry group $$S_n$$), andmore » show how to build $$S_n$$-equivariant QNNs We provide an analytical study of their performance, proving that they do not suffer from barren plateaus, quickly reach overparametrization, and generalize well from small amounts of data. To verify our results, we perform numerical simulations for a graph state classification task. Our work provides theoretical guarantees for equivariant QNNs, thus indicating the power and potential of GQML.« less
  6. Theory for Equivariant Quantum Neural Networks

    Quantum neural network architectures that have little to no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks the action of which commutes with that of the symmetry. In this work, we import these ideas to the quantum realm by presenting a comprehensive theoretical framework to design equivariant quantum neural networks (EQNNs) for essentially any relevant symmetry group. We develop multiple methods to construct equivariant layersmore » for EQNNs and analyze their advantages and drawbacks. Our methods can find unitary or general equivariant quantum channels efficiently even when the symmetry group is exponentially large or continuous. As a special implementation, we show how standard quantum convolutional neural networks (QCNNs) can be generalized to group-equivariant QCNNs where both the convolution and pooling layers are equivariant to the symmetry group. We then numerically demonstrate the effectiveness of a $$\mathbb{SU}$$(2)-equivariant QCNN over symmetry-agnostic QCNN on a classification task of phases of matter in the bond-alternating Heisenberg model. Our framework can be readily applied to virtually all areas of quantum machine learning. Lastly, we discuss about how symmetry-informed models such as EQNNs provide hopes to alleviate central challenges such as barren plateaus, poor local minima, and sample complexity.« less
  7. Resource frugal optimizer for quantum machine learning

    Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompassesmore » many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.« less
  8. Theory of overparametrization in quantum neural networks

    The prospect of achieving quantum advantage with quantum neural networks (QNNs) is exciting. Understanding how QNN properties (for example, the number of parameters $$M$$) affect the loss landscape is crucial to designing scalable QNN architectures. Here we rigorously analyze the overparametrization phenomenon in QNNs, defining overparametrization as the regime where the QNN has more than a critical number of parameters $$M_c$$ allowing it to explore all relevant directions in state space. In this study, our main results show that the dimension of the Lie algebra obtained from the generators of the QNN is an upper bound for $$M_c$$, and formore » the maximal rank that the quantum Fisher information and Hessian matrices can reach. Underparametrized QNNs have spurious local minima in the loss landscape that start disappearing when $$M$$ ≥ $$M_c$$. Thus, the overparametrization onset corresponds to a computational phase transition where the QNN trainability is greatly improved. We then connect the notion of overparametrization to the QNN capacity, so that when a QNN is overparametrized, its capacity achieves its maximum possible value.« less
  9. Subtleties in the trainability of quantum machine learning models

    A new paradigm for data science has emerged, with quantum data, quantum models, and quantum computational devices. This field, called quantum machine learning (QML), aims to achieve a speedup over traditional machine learning for data analysis. However, its success usually hinges on efficiently training the parameters in quantum neural networks, and the field of QML is still lacking theoretical scaling results for their trainability. Some trainability results have been proven for a closely related field called variational quantum algorithms (VQAs). While both fields involve training a parametrized quantum circuit, there are crucial differences that make the results for one settingmore » not readily applicable to the other. In this work, we bridge the two frameworks and show that gradient scaling results for VQAs can also be applied to study the gradient scaling of QML models. Our results indicate that features deemed detrimental for VQA trainability can also lead to issues such as barren plateaus in QML. Consequently, our work has implications for several QML proposals in the literature. In addition, we provide theoretical and numerical evidence that QML models exhibit further trainability issues not present in VQAs, arising from the use of a training dataset. We refer to these as dataset-induced barren plateaus. These results are most relevant when dealing with classical data, as here the choice of embedding scheme (i.e., the map between classical data and quantum states) can greatly affect the gradient scaling.« less
  10. Variational quantum state eigensolver

    Extracting eigenvalues and eigenvectors of exponentially large matrices will be an important application of near-term quantum computers. The variational quantum eigensolver (VQE) treats the case when the matrix is a Hamiltonian. Here, we address the case when the matrix is a density matrix ρ. We introduce the variational quantum state eigensolver (VQSE), which is analogous to VQE in that it variationally learns the largest eigenvalues of ρ as well as a gate sequence V that prepares the corresponding eigenvectors. VQSE exploits the connection between diagonalization and majorization to define a cost function C=Tr(ρ~H) where H is a non-degenerate Hamiltonian. Duemore » to Schur-concavity, C is minimized when ρ~=VρV† is diagonal in the eigenbasis of H. VQSE only requires a single copy of ρ (only n qubits) per iteration of the VQSE algorithm, making it amenable for near-term implementation. We heuristically demonstrate two applications of VQSE: (1) Principal component analysis, and (2) Error mitigation.« less
...

Search for:
All Records
Creator / Author
"Cerezo de la Roca, Marco Vinicio Sebastian"

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization