Isostatic pressing of multilayer pouch cells and its implications for battery manufacturing
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Quintus Technologies, Lewis Center, OH (United States)
Here, we report a comprehensive investigation into the impact of isostatic pressure (ISP) processing on multilayer pouch cells. The study compares baseline electrodes fabricated using conventional manufacturing processes with isostatically pressed counterparts under varying conditions. Extensive characterization is carried out to assess the differences between baseline cells and those that underwent the isostatic pressing process. The electrochemical performance of the isostatically pressed cathodes was evaluated through impedance spectroscopy and galvanostatic charge-discharge tests. The results indicated that ISP led to notable improvements in porosity, adhesion, and rate performance compared to the baseline cathodes. This work elucidates the microstructural changes induced by ISP in lithium-ion battery cathodes and highlights the technology’s promise for advancing battery manufacturing. The findings contribute to a better understanding of how ISP can be effectively integrated into cell assembly, fostering the development of more efficient and scalable battery manufacturing techniques for current Li-ion and solid-state batteries.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Laboratory Directed Research and Development (LDRD) Program
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 2438943
- Journal Information:
- Device, Journal Name: Device Journal Issue: 8 Vol. 2; ISSN 2666-9986
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Processing zirconia by sintering/hot isostatic pressing
Effect of hot isostatic pressing on RBa sub 2 Cu sub 3 O sub 7 superconductors