Deep learning-based predictive models for laser direct drive at the Omega Laser Facility
- University of Rochester, NY (United States); Laboratory for Laser Energetics, University of Rochester
- University of Rochester, NY (United States)
The rich and complex physics of inertial confinement fusion provides a unique and challenging space for high-fidelity first-principles modeling. Consequently, simulation codes that are used to design experiments are computationally expensive and lack the predictive capability required for extensive parameter exploration in search of a high-performing design for laser direct drive. In this article, we present two deep-learning-based predictive models intended to address these difficulties. The first model (TL DNN) acts as a fast emulator of simulations as well as experiments at the Omega Laser Facility. This model is trained on a simulation database and subsequently calibrated on experimental data using transfer learning. To facilitate the development of this model, an autoencoder is developed to reduce the dimensionality of the input space by compressing the laser pulse input. The model predicts key experimental scalar observables of Omega experiments with high accuracy and minimal computational cost. This deep neural net enables rapid exploration of a high-dimensional input parameter space for an optimal implosion design. The second model (DNN SM+) aims to extend the statistical modeling work of Lees et al. [Phys. Rev. Lett. 127, 105001 (2021)], by increasing the complexity of the model space and allowing for coupling between degradation terms. Since the model capacity of DNN SM+ is higher than the model of Lees et al., DNN SM+ can potentially provide an improvement in predictive capability, and we use this model to provide insight into complicated degradation dependencies.
- Research Organization:
- University of Rochester, NY (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0004144; SC0024381; SC0022132; SC0021072; SC0024456
- OSTI ID:
- 2356817
- Alternate ID(s):
- OSTI ID: 2567722
- Journal Information:
- Physics of Plasmas, Journal Name: Physics of Plasmas Journal Issue: 5 Vol. 31; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Inference of the neutron down-scatter ratio using neutron time-of-flight data for DT-layered implosions on the OMEGA laser
Bridging the gap between experiments and simulations using machine learning