Neural-network-based drag force model for polydisperse assemblies of irregular-shaped particles
Journal Article
·
· Powder Technology
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- FE0031905
- OSTI ID:
- 2340225
- Journal Information:
- Powder Technology, Journal Name: Powder Technology Vol. 440 Journal Issue: C; ISSN 0032-5910
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- Netherlands
- Language:
- English
Similar Records
Deep learning for drag force modelling in dilute, poly-dispersed particle-laden flows with irregular-shaped particles
A machine learning-based interaction force model for non-spherical and irregular particles in low Reynolds number incompressible flows
DCC-DNN: A deep neural network model to predict the drag coefficients of spherical and non-spherical particles aided by empirical correlations
Journal Article
·
2022
· Chemical Engineering Science
·
OSTI ID:2418235
A machine learning-based interaction force model for non-spherical and irregular particles in low Reynolds number incompressible flows
Journal Article
·
2021
· Powder Technology
·
OSTI ID:1867687
DCC-DNN: A deep neural network model to predict the drag coefficients of spherical and non-spherical particles aided by empirical correlations
Journal Article
·
2024
· Powder Technology
·
OSTI ID:2369064
+2 more