Double-sided electron energy analyzer for measurement of non-Maxwellian electron energy distributions
- Korea Institute of Fusion Energy, Daejeon (Korea, Republic of)
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Here, a double-sided electron energy analyzer is developed for studies of magnetic reconnection. It can measure electron energy distribution functions along two directions opposite to each other at the same time. Each side is composed of a floating reference grid, an energy selector grid, and a collector plate. The voltage of the selector grid is swept from –40 to 0 V with respect to the reference grid with a frequency of 1 MHz. This fast sweeping is required to resolve sub-Alfvénic changes in plasma quantities of the Magnetic Reconnection Experiment, where the typical Alfvénic time is a few microseconds. The reliability of the energy analyzer is checked in Maxwellian plasmas away from the reconnection region. In this case, the electron temperature computed from the electron energy distribution function agrees with measurements of a reference triple Langmuir probe. When it is located near the reconnection region, the temperatures of the tail electron population from both sides, facing into the electron flow and facing away from it, exceed the bulk electron temperature measured by the Langmuir probe by a factor of about 2.
- Research Organization:
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-09CH11466
- OSTI ID:
- 2282135
- Journal Information:
- Review of Scientific Instruments, Vol. 94, Issue 12; ISSN 0034-6748
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes
The behavior of gridded spherical and planar electron probes in a non-Maxwellian plasma. Environmental research papers