Probing corrosion using a simple and versatile in situ multimodal corrosion measurement system
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
In this work, we have developed a unique in situ multimodal corrosion system that is capable of acquiring electrochemical data, sample imaging/visualization and hydrogen collection, simultaneously. Each of these modalities yield valuable information pertaining to the ongoing corrosion process. Combining them can yield holistic information on the role of microstructure, processing history, presence of coatings, etc., on the sequence of steps occurring during the corrosion process, and how they correlate with the acquired electrochemical data. Four materials systems, namely AA6061-T6 aluminum alloy, AZ91 magnesium alloy, galvanized DP590 steel, and pure Zn, were investigated under open circuit potential and under potentiodynamic polarization. The multimodal corrosion system was utilized to observe processes such as surface passivation and dissolution, pit and filiform corrosion initiation and propagation, and was correlated with location and magnitude of hydrogen evolution. This approach is shown to yield a truly multimodal understanding of the ongoing corrosion processes.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
- Grant/Contract Number:
- AC05-76RL01830
- OSTI ID:
- 2279033
- Report Number(s):
- PNNL-SA--185203
- Journal Information:
- Scientific Reports, Journal Name: Scientific Reports Journal Issue: 1 Vol. 13; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effect of Welding Parameters on the Corrosion Behavior of Dissimilar Alloy Welds of T6 AA6061 Al-Galvanized Mild Steel
Electrochemistry of multiphase nickel-base alloys in aqueous systems