Improving evapotranspiration computation with electrical resistivity tomography in a maize field
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Univ. degli Studi di Padova (Italy)
Hydrogeophysical methods have been increasingly used to study subsurface soil–water dynamics, yet their application beyond the soil compartment or the quantitative link to soil hydraulic properties remains limited. To examine how these methods can inform model-based evapotranspiration (ET) calculation under varying soil water conditions, we conducted a pilot-scale field study at an experimental maize plot with manipulated irrigation treatments. Our goal was to develop a workflow for (1) acquiring and inverting field electrical resistivity tomography (ERT) data, (2) correlating ERT to soil hydraulic properties, (3) spatially characterizing soil water stress that feeds into ET modeling (the FAO-56 model), and (4) evaluating the performance of ERT-based ET computation. Our results showed that ERT was able to capture decimeter-scale soil water content (SWC) dynamics from root water uptake and irrigation manipulation and the contrast of soil water stress between deficiently and fully irrigated maize. We also demonstrated the flexibility of using ERT to spatially integrate soil water stress in the soil volume of interest, which could be adjusted based on different crops and plot layouts. The integration of the ERT datasets into ET modeling provided insights into the spatial heterogeneity of the subsurface that has been challenging for point-based sensing, which can further our understanding of the hydraulic dynamics in the soil-plant-atmosphere continuum.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Laboratory Directed Research and Development (LDRD) Program
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 2222501
- Alternate ID(s):
- OSTI ID: 2222502; OSTI ID: 2349065
- Journal Information:
- Vadose Zone Journal, Vol. 23, Issue 1; ISSN 1539-1663
- Publisher:
- Soil Science Society of AmericaCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Ground Penetrating Radar in Hydrogeophysics
Revisiting the definition of field capacity as a functional parameter in a layered agronomic soil profile beneath irrigated maize