The peroxidation-derived DNA adduct, 6-oxo-M1dG, is a strong block to replication by human DNA polymerase η
- Vanderbilt Univ., Nashville, TN (United States). School of Medicine
The DNA adduct 6-oxo-M1dG, (3-(2'-deoxy-β-D-erythro-pentofuranosyl)-6-oxo-pyrimido(1,2alpha)purin-10(3H)-one) is formed in the genome via oxidation of the peroxidation-derived adduct M1dG. However, the effect of 6-oxo-M1dG adducts on subsequent DNA replication is unclear. Here we investigated the ability of the human Y-family polymerase hPol η to bypass 6-oxo-M1dG. Using steady-state kinetics and analysis of DNA extension products by liquid chromatography–tandem mass spectrometry, we found hPol η preferentially inserts a dAMP or dGMP nucleotide into primer–templates across from the 6-oxo-M1dG adduct, with dGMP being slightly preferred. We also show primer–templates with a 3'-terminal dGMP or dAMP across from 6-oxo-M1dG were extended to a greater degree than primers with a dCMP or dTMP across from the adduct. In addition, we explored the structural basis for bypass of 6-oxo-M1dG by hPol η using X-ray crystallography of both an insertion-stage and an extension-stage complex. In the insertion-stage complex, we observed that the incoming dCTP opposite 6-oxo-M1dG, although present during crystallization, was not present in the active site. We found the adduct does not interact with residues in the hPol η active site but rather forms stacking interactions with the base pair immediately 3' to the adduct. In the extension-stage complex, we observed the 3' hydroxyl group of the primer strand dGMP across from 6-oxo-M1dG is not positioned correctly to form a phosphodiester bond with the incoming dCTP. Taken together, these results indicate 6-oxo-M1dG forms a strong block to DNA replication by hPol η and provide a structural basis for its blocking ability.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH)
- Grant/Contract Number:
- AC02-06CH11357; P30 CA-068485; W-31109-Eng-38
- OSTI ID:
- 1992172
- Alternate ID(s):
- OSTI ID: 2470090
- Journal Information:
- Journal of Biological Chemistry, Vol. 299, Issue 8; ISSN 0021-9258
- Publisher:
- American Society for Biochemistry and Molecular BiologyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Structural and Functional Elucidation of the Mechanism Promoting Error-prone Synthesis by Human DNA Polymerase [kappa] Opposite the 7,8-Dihydro-8-oxo-2'-deoxyguanosine Adduct
Mechanism of Error-Free Bypass of the Environmental Carcinogen N -(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η