Carbon Capture Phenomena in Metal-Organic Frameworks with Neural Network Potentials
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- OSTI ID:
- 1973176
- Journal Information:
- PRX Energy, Journal Name: PRX Energy Vol. 2 Journal Issue: 2; ISSN 2768-5608
- Publisher:
- American Physical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration
Prospective life-cycle modeling of a carbon capture and storage system using metal-organic frameworks for CO2 capture
A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture
Journal Article
·
2022
· npj Computational Materials
·
OSTI ID:1868123
+6 more
Prospective life-cycle modeling of a carbon capture and storage system using metal-organic frameworks for CO2 capture
Journal Article
·
2013
· RSC Advances
·
OSTI ID:1211258
A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture
Journal Article
·
2024
· Communications Chemistry
·
OSTI ID:2305430
+5 more