A method to computationally screen for tunable properties of crystalline alloys
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC02-05-CH11231
- OSTI ID:
- 1971667
- Journal Information:
- Patterns, Journal Name: Patterns Vol. 4 Journal Issue: 5; ISSN 2666-3899
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
High-throughput calculations of charged point defect properties with semi-local density functional theory—performance benchmarks for materials screening applications
The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity
Computationally-driven discovery of second harmonic generation in EuBa 3 (B 3 O 6 ) 3 through inversion symmetry breaking
Journal Article
·
2023
· npj Computational Materials
·
OSTI ID:1972498
+10 more
The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity
Journal Article
·
2024
· npj Computational Materials
·
OSTI ID:2483354
+6 more
Computationally-driven discovery of second harmonic generation in EuBa 3 (B 3 O 6 ) 3 through inversion symmetry breaking
Journal Article
·
2023
· Optical Materials Express
·
OSTI ID:2204805
+13 more