DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser

Abstract

Compound parabolic concentrator (CPC) targets are utilized at the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser to enhance the acceleration of electrons and production of high energy photons, for laser durations of 10 ps and energies up to 2.4 kJ. A large enhancement of mean electron energy (>2 ×) and photon brightness (>10×) is found with CPC targets compared to flat targets. Using multiple diagnostic techniques at different spatial locations and scaling by gold activation spatial data, photon spectra are characterized for Ephoton = 0.5-30 MeV. Beam width and pointing variations are given. The efficient production of MeV photons at Ilaser ≈ 2 x 1018 W/cm2 with CPCs is observed, with doses of >10 rad in air at 1 m for Ephoton > 0.5 MeV; these exceed those previously reported with laser-driven sources. Using this source, sub-mm resolution radiographs are generated through large areal density radiograph objects. Hence these results are promising for the development of bright MeV x-ray and particle sources on Petawatt class laser systems.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1];  [1]; ORCiD logo [4];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [5]; ORCiD logo [2]; ORCiD logo [1] more »; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [6];  [5]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1];  [5]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1] « less
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  2. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
  3. Florida A & M University, Tallahassee, FL (United States)
  4. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Georgia Institute of Technology, Atlanta, GA (United States)
  5. General Atomics, San Diego, CA (United States)
  6. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Material Physics Group, AWE Plc, Reading (United Kingdom)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1962481
Alternate Identifier(s):
OSTI ID: 1907715
Report Number(s):
LLNL-JRNL-839566
Journal ID: ISSN 1070-664X; 1059651; TRN: US2313080
Grant/Contract Number:  
AC52-07NA27344; NA0001808; 19-SI-002
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 30; Journal Issue: 1; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; photon spectra; high energy density physics; photons; laser plasma interactions; Bremsstrahlung; radiography; hard x-rays' lasers; radioactive decay; radiation detectors

Citation Formats

Kerr, S. M., Rusby, D., Williams, G. J., Meaney, K., Schlossberg, D. J., Aghedo, A., Alessi, D., Ayers, J., Azhar, S., Aufderheide, M. B., Bowers, M. W., Bude, J. D., Chen, H., Cochran, G., Crane, J., Nicola, J. Di, Fittinghoff, D. N., Fitzsimmons, P., Geppert-Kleinrath, H., Golick, B., Grim, G. P., Haid, A., Hamamoto, M., Heredia, R., Hermann, M., Herriot, S., Hill, M. P., Hoke, W., Kalantar, D., Kemp, A., Kim, Y., LaFortune, K., Lemos, N., Link, A., Lowe-Webb, R., MacPhee, A., Manuel, M., Martinez, D., Mauldin, M., Patankar, S., Pelz, L., Prantil, M. A., Quinn, M., Siders, C. W., Vonhof, S., Wegner, P., Wilks, S., Williams, W., Youngblood, K., and Mackinnon, A. J. Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser. United States: N. p., 2023. Web. doi:10.1063/5.0124539.
Kerr, S. M., Rusby, D., Williams, G. J., Meaney, K., Schlossberg, D. J., Aghedo, A., Alessi, D., Ayers, J., Azhar, S., Aufderheide, M. B., Bowers, M. W., Bude, J. D., Chen, H., Cochran, G., Crane, J., Nicola, J. Di, Fittinghoff, D. N., Fitzsimmons, P., Geppert-Kleinrath, H., Golick, B., Grim, G. P., Haid, A., Hamamoto, M., Heredia, R., Hermann, M., Herriot, S., Hill, M. P., Hoke, W., Kalantar, D., Kemp, A., Kim, Y., LaFortune, K., Lemos, N., Link, A., Lowe-Webb, R., MacPhee, A., Manuel, M., Martinez, D., Mauldin, M., Patankar, S., Pelz, L., Prantil, M. A., Quinn, M., Siders, C. W., Vonhof, S., Wegner, P., Wilks, S., Williams, W., Youngblood, K., & Mackinnon, A. J. Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser. United States. https://doi.org/10.1063/5.0124539
Kerr, S. M., Rusby, D., Williams, G. J., Meaney, K., Schlossberg, D. J., Aghedo, A., Alessi, D., Ayers, J., Azhar, S., Aufderheide, M. B., Bowers, M. W., Bude, J. D., Chen, H., Cochran, G., Crane, J., Nicola, J. Di, Fittinghoff, D. N., Fitzsimmons, P., Geppert-Kleinrath, H., Golick, B., Grim, G. P., Haid, A., Hamamoto, M., Heredia, R., Hermann, M., Herriot, S., Hill, M. P., Hoke, W., Kalantar, D., Kemp, A., Kim, Y., LaFortune, K., Lemos, N., Link, A., Lowe-Webb, R., MacPhee, A., Manuel, M., Martinez, D., Mauldin, M., Patankar, S., Pelz, L., Prantil, M. A., Quinn, M., Siders, C. W., Vonhof, S., Wegner, P., Wilks, S., Williams, W., Youngblood, K., and Mackinnon, A. J. Tue . "Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser". United States. https://doi.org/10.1063/5.0124539. https://www.osti.gov/servlets/purl/1962481.
@article{osti_1962481,
title = {Development of a bright MeV photon source with compound parabolic concentrator targets on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser},
author = {Kerr, S. M. and Rusby, D. and Williams, G. J. and Meaney, K. and Schlossberg, D. J. and Aghedo, A. and Alessi, D. and Ayers, J. and Azhar, S. and Aufderheide, M. B. and Bowers, M. W. and Bude, J. D. and Chen, H. and Cochran, G. and Crane, J. and Nicola, J. Di and Fittinghoff, D. N. and Fitzsimmons, P. and Geppert-Kleinrath, H. and Golick, B. and Grim, G. P. and Haid, A. and Hamamoto, M. and Heredia, R. and Hermann, M. and Herriot, S. and Hill, M. P. and Hoke, W. and Kalantar, D. and Kemp, A. and Kim, Y. and LaFortune, K. and Lemos, N. and Link, A. and Lowe-Webb, R. and MacPhee, A. and Manuel, M. and Martinez, D. and Mauldin, M. and Patankar, S. and Pelz, L. and Prantil, M. A. and Quinn, M. and Siders, C. W. and Vonhof, S. and Wegner, P. and Wilks, S. and Williams, W. and Youngblood, K. and Mackinnon, A. J.},
abstractNote = {Compound parabolic concentrator (CPC) targets are utilized at the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser to enhance the acceleration of electrons and production of high energy photons, for laser durations of 10 ps and energies up to 2.4 kJ. A large enhancement of mean electron energy (>2 ×) and photon brightness (>10×) is found with CPC targets compared to flat targets. Using multiple diagnostic techniques at different spatial locations and scaling by gold activation spatial data, photon spectra are characterized for Ephoton = 0.5-30 MeV. Beam width and pointing variations are given. The efficient production of MeV photons at Ilaser ≈ 2 x 1018 W/cm2 with CPCs is observed, with doses of >10 rad in air at 1 m for Ephoton > 0.5 MeV; these exceed those previously reported with laser-driven sources. Using this source, sub-mm resolution radiographs are generated through large areal density radiograph objects. Hence these results are promising for the development of bright MeV x-ray and particle sources on Petawatt class laser systems.},
doi = {10.1063/5.0124539},
journal = {Physics of Plasmas},
number = 1,
volume = 30,
place = {United States},
year = {Tue Jan 03 00:00:00 EST 2023},
month = {Tue Jan 03 00:00:00 EST 2023}
}

Works referenced in this record:

High-Resolution γ -Ray Radiography Produced by a Laser-Plasma Driven Electron Source
journal, January 2005


High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments
journal, October 1999


Radiological characterisation of photon radiation from ultra-high-intensity laser–plasma and nuclear interactions
journal, August 2006


Order-of-magnitude increase in laser-target coupling at near-relativistic intensities using compound parabolic concentrators
journal, March 2021


Plasma expansion and relativistic filamentation in intense laser-irradiated cone targets
journal, November 2021

  • Cochran, G. E.; Kemp, A. J.; Wilks, S. C.
  • Physics of Plasmas, Vol. 28, Issue 11
  • DOI: 10.1063/5.0065725

Bremsstrahlung spectrum and photon dose from short-pulse high-intensity laser interaction on various metal targets
journal, November 2019

  • Compant La Fontaine, A.; Courtois, C.; Gobet, F.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5118361

High-current laser-driven beams of relativistic electrons for high energy density research
journal, October 2020

  • Rosmej, O. N.; Gyrdymov, M.; Günther, M. M.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 11
  • DOI: 10.1088/1361-6587/abb24e

Particle acceleration in relativistic laser channels
journal, July 1999

  • Pukhov, A.; Sheng, Z. -M.; Meyer-ter-Vehn, J.
  • Physics of Plasmas, Vol. 6, Issue 7
  • DOI: 10.1063/1.873242

Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets
journal, May 2008

  • Flippo, K. A.; d’Humières, E.; Gaillard, S. A.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2918125

Production of relativistic electrons at subrelativistic laser intensities
journal, March 2020


Molière's Theory of Multiple Scattering
journal, March 1953


Photon dose produced by a high-intensity laser on a solid target
journal, July 2014


Hard x-ray production from high intensity laser solid interactions (invited)
journal, January 1999

  • Perry, M. D.; Sefcik, J. A.; Cowan, T.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149442

Review of progress in Fast Ignition
journal, May 2005

  • Tabak, M.; Clark, D. S.; Hatchett, S. P.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1871246

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions
journal, October 2008

  • Chen, Hui; Link, Anthony J.; van Maren, Roger
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2953679

Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications
journal, May 2015


High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction
journal, February 2011

  • Courtois, C.; Edwards, R.; Compant La Fontaine, A.
  • Physics of Plasmas, Vol. 18, Issue 2
  • DOI: 10.1063/1.3551738

Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography
journal, August 2013

  • Courtois, C.; Edwards, R.; Compant La Fontaine, A.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818505

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition
journal, August 2001

  • Kodama, R.; Norreys, P. A.; Mima, K.
  • Nature, Vol. 412, Issue 6849
  • DOI: 10.1038/35090525

Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas
journal, April 2016

  • Arefiev, A. V.; Khudik, V. N.; Robinson, A. P. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946024

High-energy differential-filtering photon spectrometer for ultraintense laser-matter interactions
journal, October 2018

  • Williams, G. J.; Tommasini, R.; Lemos, N.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039383

Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets
journal, May 2011

  • Gaillard, S. A.; Kluge, T.; Flippo, K. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3575624

MeV bremsstrahlung X rays from intense laser interaction with solid foils
journal, December 2018


Development of x-ray radiography for high energy density physics
journal, October 2014

  • Morace, A.; Fedeli, L.; Batani, D.
  • Physics of Plasmas, Vol. 21, Issue 10
  • DOI: 10.1063/1.4900867

Multi-pulse time resolved gamma ray spectroscopy of the advanced radiographic capability using gas Cherenkov diagnostics
journal, March 2021

  • Meaney, K. D.; Kerr, S.; Williams, G. J.
  • Physics of Plasmas, Vol. 28, Issue 3
  • DOI: 10.1063/5.0034214

Direct electron acceleration in multi-kilojoule, multi-picosecond laser pulses
journal, October 2020

  • Kemp, A. J.; Wilks, S. C.
  • Physics of Plasmas, Vol. 27, Issue 10
  • DOI: 10.1063/5.0007159

Dilation x-ray imager a new/faster gated x-ray imager for the NIF
journal, October 2012

  • Nagel, S. R.; Hilsabeck, T. J.; Bell, P. M.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732849

Theoretical Understanding of Enhanced Proton Energies from Laser-Cone Interactions
conference, January 2010

  • Kluge, T.; Gaillard, S. A.; Bussmann, M.
  • AIP Conference Proceedings
  • DOI: 10.1063/1.3520418

Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion
journal, February 2010


Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets
journal, January 2008

  • Baton, S. D.; Koenig, M.; Fuchs, J.
  • Physics of Plasmas, Vol. 15, Issue 4
  • DOI: 10.1063/1.2903054

Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation
journal, December 2004


Laser light and hot electron micro focusing using a conical target
journal, June 2004

  • Sentoku, Y.; Mima, K.; Ruhl, H.
  • Physics of Plasmas, Vol. 11, Issue 6, p. 3083-3087
  • DOI: 10.1063/1.1735734

Absorption of ultra-intense laser pulses
journal, August 1992


Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime
journal, January 2021

  • Simpson, R. A.; Scott, G. G.; Mariscal, D.
  • Physics of Plasmas, Vol. 28, Issue 1
  • DOI: 10.1063/5.0023612

Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography
journal, July 2004

  • Lancaster, K. L.; Karsch, S.; Habara, H.
  • Physics of Plasmas, Vol. 11, Issue 7
  • DOI: 10.1063/1.1756911

The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output
conference, February 2015

  • Di Nicola, J. M.; Yang, S. T.; Boley, C. D.
  • SPIE LASE, SPIE Proceedings
  • DOI: 10.1117/12.2080459

Enhancements in laser-generated hot-electron production via focusing cone targets at short pulse and high contrast
journal, May 2021


Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses
journal, January 2009

  • Courtois, C.; Compant La Fontaine, A.; Landoas, O.
  • Physics of Plasmas, Vol. 16, Issue 1
  • DOI: 10.1063/1.3067825

Enhancement of high energy X-ray radiography using compound parabolic concentrator targets
journal, March 2022


Injection laser system for Advanced Radiographic Capability using chirped pulse amplification on the National Ignition Facility
journal, January 2019

  • Heebner, John E.; Acree Jr., Robert L.; Alessi, David A.
  • Applied Optics, Vol. 58, Issue 31
  • DOI: 10.1364/AO.58.008501

Spatio-temporal focal spot characterization and modeling of the NIF ARC kilojoule picosecond laser
journal, January 2021

  • Williams, Wade H.; Crane, John K.; Alessi, David A.
  • Applied Optics, Vol. 60, Issue 8
  • DOI: 10.1364/AO.416846

Beam and target alignment at the National Ignition Facility using the Target Alignment Sensor (TAS)
conference, October 2012

  • Di Nicola, P.; Kalantar, D.; McCarville, T.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.930173

Enhanced laser–plasma interactions using non-imaging optical concentrator targets
journal, January 2020


Effect of plasma hydrodynamics on laser-produced bremsstrahlung MeV photon dose
journal, November 2020

  • Courtois, C.; Compant La Fontaine, A.; Bonnet, T.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0019816

Nuclear diagnostics for petawatt experiments (invited)
journal, January 2001

  • Stoyer, M. A.; Sangster, T. C.; Henry, E. A.
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1319355