DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-Richtmyer–Meshkov instability ejecta production based on shallow bubble collapse

Abstract

The study of shock-driven ejecta production has focused on Richtmyer–Meshkov instability (RMI) growth from geometric features of the material surface. Extensive study of this mechanism under both single- and multiple-shock conditions has found that the ejected mass tends to be closely associated with the shocked surface phase, and its temperature is not dramatically greater than the hydrodynamic shock temperature of the bulk. In this work, we propose and demonstrate a new ejecta production mechanism that can occur under multiple-shock conditions based on the collapse of bubbles near the free surface of the material. This mechanism produces ejected mass that is much greater in quantity than observed in the RMI case. The particles are much hotter than predicted by the shock Hugoniot state, and the ejected mass does not appear to be strongly dependent upon initial surface finish. The ejecta source extends into the material with no clear remaining free surface. We name this mechanism Shallow Bubble Collapse (SBC) and discuss the conditions under which it activates. We demonstrate resolved modeling methods that enable the calculation, design, and study of SBC as a mechanism and perform a series of experiments to compare with the models. Under some multiple-shock conditions, SBC ejectionmore » produces ten times more ejected mass than RMI growth.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  2. Nevada National Security Site (NNSS), Santa Barbara, CA (United States)
  3. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1962478
Alternate Identifier(s):
OSTI ID: 1908834
Report Number(s):
LLNL-JRNL-841345
Journal ID: ISSN 0021-8979; 1062273; TRN: US2313079
Grant/Contract Number:  
AC52-07NA27344; NA0003624; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 133; Journal Issue: 2; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ballistic transport; thermal instruments; shock dynamics; temperature metrology; flow instabilities; shock wave; cavitation bubbles; spectrograms; heterodyne laser interferometry; surface states

Citation Formats

Maskaly, G. R., Stevens, G. D., La Lone, B. M., Turley, W. D., Staska, M. D., Najjar, F. M., and Hartsfield, T. M. Non-Richtmyer–Meshkov instability ejecta production based on shallow bubble collapse. United States: N. p., 2023. Web. doi:10.1063/5.0132256.
Maskaly, G. R., Stevens, G. D., La Lone, B. M., Turley, W. D., Staska, M. D., Najjar, F. M., & Hartsfield, T. M. Non-Richtmyer–Meshkov instability ejecta production based on shallow bubble collapse. United States. https://doi.org/10.1063/5.0132256
Maskaly, G. R., Stevens, G. D., La Lone, B. M., Turley, W. D., Staska, M. D., Najjar, F. M., and Hartsfield, T. M. Thu . "Non-Richtmyer–Meshkov instability ejecta production based on shallow bubble collapse". United States. https://doi.org/10.1063/5.0132256. https://www.osti.gov/servlets/purl/1962478.
@article{osti_1962478,
title = {Non-Richtmyer–Meshkov instability ejecta production based on shallow bubble collapse},
author = {Maskaly, G. R. and Stevens, G. D. and La Lone, B. M. and Turley, W. D. and Staska, M. D. and Najjar, F. M. and Hartsfield, T. M.},
abstractNote = {The study of shock-driven ejecta production has focused on Richtmyer–Meshkov instability (RMI) growth from geometric features of the material surface. Extensive study of this mechanism under both single- and multiple-shock conditions has found that the ejected mass tends to be closely associated with the shocked surface phase, and its temperature is not dramatically greater than the hydrodynamic shock temperature of the bulk. In this work, we propose and demonstrate a new ejecta production mechanism that can occur under multiple-shock conditions based on the collapse of bubbles near the free surface of the material. This mechanism produces ejected mass that is much greater in quantity than observed in the RMI case. The particles are much hotter than predicted by the shock Hugoniot state, and the ejected mass does not appear to be strongly dependent upon initial surface finish. The ejecta source extends into the material with no clear remaining free surface. We name this mechanism Shallow Bubble Collapse (SBC) and discuss the conditions under which it activates. We demonstrate resolved modeling methods that enable the calculation, design, and study of SBC as a mechanism and perform a series of experiments to compare with the models. Under some multiple-shock conditions, SBC ejection produces ten times more ejected mass than RMI growth.},
doi = {10.1063/5.0132256},
journal = {Journal of Applied Physics},
number = 2,
volume = 133,
place = {United States},
year = {Thu Jan 12 00:00:00 EST 2023},
month = {Thu Jan 12 00:00:00 EST 2023}
}

Works referenced in this record:

Use of a multiwavelength pyrometer in several elevated temperature aerospace applications
journal, January 2001

  • Ng, Daniel; Fralick, Gustave
  • Review of Scientific Instruments, Vol. 72, Issue 2
  • DOI: 10.1063/1.1340558

Understanding the transport and break up of reactive ejecta
journal, January 2021


Shock Melting and Vaporization of Metals
journal, May 1972

  • Ahrens, Thomas J.
  • Journal of Applied Physics, Vol. 43, Issue 5
  • DOI: 10.1063/1.1661519

Piezoelectric probe for the detection of shock‐induced spray and spall
journal, December 1989

  • Speight, C. S.; Harper, L.; Smeeton, V. S.
  • Review of Scientific Instruments, Vol. 60, Issue 12
  • DOI: 10.1063/1.1140443

Exploring Richtmyer–Meshkov instability phenomena and ejecta cloud physics
journal, September 2008

  • Zellner, M. B.; Buttler, W. T.
  • Applied Physics Letters, Vol. 93, Issue 11
  • DOI: 10.1063/1.2982421

Compact system for high-speed velocimetry using heterodyne techniques
journal, August 2006

  • Strand, O. T.; Goosman, D. R.; Martinez, C.
  • Review of Scientific Instruments, Vol. 77, Issue 8
  • DOI: 10.1063/1.2336749

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum
journal, June 2012

  • Buttler, W. T.; Oró, D. M.; Preston, D. L.
  • Journal of Fluid Mechanics, Vol. 703
  • DOI: 10.1017/jfm.2012.190

Emissivity measurements of shocked tin using a multi-wavelength integrating sphere
journal, November 2011

  • Seifter, A.; Grover, M.; Holtkamp, D. B.
  • Journal of Applied Physics, Vol. 110, Issue 9
  • DOI: 10.1063/1.3656429

Piezoelectric characterization of ejecta from shocked tin surfaces
journal, December 2005

  • Vogan, W. S.; Anderson, W. W.; Grover, M.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2132521

A study of ALE simulations of Rayleigh–Taylor instability
journal, March 2001

  • Darlington, Rebecca M.; McAbee, Thomas L.; Rodrigue, Garry
  • Computer Physics Communications, Vol. 135, Issue 1
  • DOI: 10.1016/S0010-4655(00)00216-2

A Model of a Source of Shock Wave Metal Ejection Based on Richtmyer–Meshkov Instability Theory
journal, June 2017

  • Georgievskaya, Alla B.; Raevsky, V. A.
  • Journal of Dynamic Behavior of Materials, Vol. 3, Issue 2
  • DOI: 10.1007/s40870-017-0118-2

Advances in Ejecta Diagnostics at LLNL
journal, May 2017

  • Steele, P. T.; Jacoby, B. A.; Compton, S. M.
  • Journal of Dynamic Behavior of Materials, Vol. 3, Issue 2
  • DOI: 10.1007/s40870-017-0119-1

Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure
journal, June 2009

  • Seifter, A.; Furlanetto, M. R.; Grover, M.
  • Journal of Applied Physics, Vol. 105, Issue 12
  • DOI: 10.1063/1.3153973

Ejecta source model based on the nonlinear Richtmyer-Meshkov instability
journal, January 2013

  • Dimonte, Guy; Terrones, Guillermo; Cherne, F. J.
  • Journal of Applied Physics, Vol. 113, Issue 2
  • DOI: 10.1063/1.4773575

Analytic solutions for Asay foil trajectories with implications for ejecta source models and mass measurements
journal, September 2021

  • Tregillis, I. L.; Koskelo, Aaron; Harrison, Alan K.
  • Journal of Applied Physics, Vol. 130, Issue 12
  • DOI: 10.1063/5.0065961

The temperatures of ejecta transporting in vacuum and gases
journal, May 2022

  • Hartsfield, T. M.; Schulze, R. K.; La Lone, B. M.
  • Journal of Applied Physics, Vol. 131, Issue 19
  • DOI: 10.1063/5.0087212

Temperature measurements in cerium shocked from 8.4 to 23.5 GPa
journal, April 2021

  • Hixson, R. S.; La Lone, B. M.; Staska, M. D.
  • Journal of Applied Physics, Vol. 129, Issue 15
  • DOI: 10.1063/5.0043096

Extreme measurements with Photonic Doppler Velocimetry (PDV)
journal, May 2020

  • Dolan, D. H.
  • Review of Scientific Instruments, Vol. 91, Issue 5
  • DOI: 10.1063/5.0004363

Low-temperature measurements on shock-loaded tin
conference, March 2005


Dynamic comparisons of piezoelectric ejecta diagnostics
journal, March 2007

  • Buttler, W. T.; Zellner, M. B.; Olson, R. T.
  • Journal of Applied Physics, Vol. 101, Issue 6
  • DOI: 10.1063/1.2712177

About the Proper Wavelength for Pyrometry on Shock Physics Experiments
journal, May 2007


A comparison of Raman and pyrometry dynamic temperature measurements of shocked cyclohexane
journal, February 2021

  • Hartsfield, T. M.; Lang, J. M.; Goodwin, P. M.
  • Journal of Applied Physics, Vol. 129, Issue 7
  • DOI: 10.1063/5.0039288

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


Examining the high-pressure response and shock melting in cerium using optical pyrometry
journal, December 2020


Estimation of Metal Strength at Very High Rates Using Free-Surface Richtmyer–Meshkov Instabilities
journal, March 2017

  • Prime, Michael B.; Buttler, William T.; Buechler, Miles A.
  • Journal of Dynamic Behavior of Materials, Vol. 3, Issue 2
  • DOI: 10.1007/s40870-017-0103-9

Ejection of material from shocked surfaces
journal, September 1976

  • Asay, J. R.; Mix, L. P.; Perry, F. C.
  • Applied Physics Letters, Vol. 29, Issue 5
  • DOI: 10.1063/1.89066

Taylor instability in shock acceleration of compressible fluids
journal, May 1960

  • Richtmyer, Robert D.
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130207

Foreword to the Special Issue on Ejecta
journal, May 2017

  • Buttler, W. T.; Williams, R. J. R.; Najjar, F. M.
  • Journal of Dynamic Behavior of Materials, Vol. 3, Issue 2
  • DOI: 10.1007/s40870-017-0120-8

Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect
conference, January 2012

  • Georgievskaya, Alla; Raevsky, Viktor Alekseevish
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3686448

Dynamic fracture and spallation in ductile solids
journal, April 1981

  • Johnson, J. N.
  • Journal of Applied Physics, Vol. 52, Issue 4
  • DOI: 10.1063/1.329011