DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Translating aqueous CO 2 hydrogenation activity to electrocatalytic reduction with a homogeneous cobalt catalyst

Abstract

A molecular cobalt CO 2 hydrogenation catalyst was explored for electrocatalytic CO 2 reduction under aqueous conditions.

Authors:
 [1]; ORCiD logo [1]
  1. Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1903644
Grant/Contract Number:  
SC0020275
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Name: ChemComm Journal Volume: 59 Journal Issue: 3; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Wang, Xinran S., and Yang, Jenny Y. Translating aqueous CO 2 hydrogenation activity to electrocatalytic reduction with a homogeneous cobalt catalyst. United Kingdom: N. p., 2023. Web. doi:10.1039/D2CC05473F.
Wang, Xinran S., & Yang, Jenny Y. Translating aqueous CO 2 hydrogenation activity to electrocatalytic reduction with a homogeneous cobalt catalyst. United Kingdom. https://doi.org/10.1039/D2CC05473F
Wang, Xinran S., and Yang, Jenny Y. Tue . "Translating aqueous CO 2 hydrogenation activity to electrocatalytic reduction with a homogeneous cobalt catalyst". United Kingdom. https://doi.org/10.1039/D2CC05473F.
@article{osti_1903644,
title = {Translating aqueous CO 2 hydrogenation activity to electrocatalytic reduction with a homogeneous cobalt catalyst},
author = {Wang, Xinran S. and Yang, Jenny Y.},
abstractNote = {A molecular cobalt CO 2 hydrogenation catalyst was explored for electrocatalytic CO 2 reduction under aqueous conditions.},
doi = {10.1039/D2CC05473F},
journal = {ChemComm},
number = 3,
volume = 59,
place = {United Kingdom},
year = {Tue Jan 03 00:00:00 EST 2023},
month = {Tue Jan 03 00:00:00 EST 2023}
}

Works referenced in this record:

Thermodynamic Considerations for Optimizing Selective CO 2 Reduction by Molecular Catalysts
journal, March 2019


Selectivity for HCO 2 over H 2 in the Electrochemical Catalytic Reduction of CO 2 by (POCOP)IrH 2
journal, August 2016

  • Johnson, Samantha I.; Nielsen, Robert J.; Goddard, William A.
  • ACS Catalysis, Vol. 6, Issue 10
  • DOI: 10.1021/acscatal.6b01755

Thermodynamic Hydricity across Solvents: Subtle Electronic Effects and Striking Ligation Effects in Iridium Hydrides
journal, July 2019


Homogeneous and heterogeneous catalysts for hydrogenation of CO 2 to methanol under mild conditions
journal, January 2021

  • Bai, Shao-Tao; De Smet, Gilles; Liao, Yuhe
  • Chemical Society Reviews, Vol. 50, Issue 7
  • DOI: 10.1039/D0CS01331E

An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst
journal, January 2013

  • Kang, Peng; Meyer, Thomas J.; Brookhart, Maurice
  • Chemical Science, Vol. 4, Issue 9
  • DOI: 10.1039/c3sc51339d

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru Complexes: Implications for CO 2 Hydrogenation to Methanol and Catalyst Inhibition
journal, August 2019

  • Mathis, Cheryl L.; Geary, Jackson; Ardon, Yotam
  • Journal of the American Chemical Society, Vol. 141, Issue 36
  • DOI: 10.1021/jacs.9b06760

Electrocatalytic Alcohol Oxidation with Ruthenium Transfer Hydrogenation Catalysts
journal, January 2017

  • Waldie, Kate M.; Flajslik, Kristen R.; McLoughlin, Elizabeth
  • Journal of the American Chemical Society, Vol. 139, Issue 2
  • DOI: 10.1021/jacs.6b09705

Directing the reactivity of metal hydrides for selective CO 2 reduction
journal, November 2018

  • Ceballos, Bianca M.; Yang, Jenny Y.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 50
  • DOI: 10.1073/pnas.1811396115

CO 2 reduction or HCO 2 oxidation? Solvent-dependent thermochemistry of a nickel hydride complex
journal, January 2017

  • Ceballos, Bianca M.; Tsay, Charlene; Yang, Jenny Y.
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/C7CC02511D

Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX 3 Compounds
journal, December 2011

  • Mock, Michael T.; Potter, Robert G.; O’Hagan, Molly J.
  • Inorganic Chemistry, Vol. 50, Issue 23
  • DOI: 10.1021/ic200857x

From Pollutant to Chemical Feedstock: Valorizing Carbon Dioxide through Photo- and Electrochemical Processes
journal, April 2022


Homogeneously Catalyzed Electroreduction of Carbon Dioxide—Methods, Mechanisms, and Catalysts
journal, January 2018


Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016


Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex
journal, March 2017

  • Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.
  • ACS Catalysis, Vol. 7, Issue 4
  • DOI: 10.1021/acscatal.7b00350

A Cobalt Hydride Catalyst for the Hydrogenation of CO 2 : Pathways for Catalysis and Deactivation
journal, September 2014

  • Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5009927

Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium
journal, February 2016

  • Pitman, Catherine L.; Brereton, Kelsey R.; Miller, Alexander J. M.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b12363

Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
journal, October 2017

  • Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201709319

Making a Splash in Homogeneous CO 2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms
journal, July 2018

  • Wiedner, Eric S.; Linehan, John C.
  • Chemistry – A European Journal, Vol. 24, Issue 64
  • DOI: 10.1002/chem.201801759

Electrocatalytic Reduction of CO 2 to Methanol by Iron Tetradentate Phosphine Complex Through Amidation Strategy
journal, April 2019


Reversible and Selective CO 2 to HCO 2 Electrocatalysis near the Thermodynamic Potential
journal, February 2020

  • Cunningham, Drew W.; Barlow, Jeffrey M.; Velazquez, Reyna S.
  • Angewandte Chemie International Edition, Vol. 59, Issue 11
  • DOI: 10.1002/anie.201913198

Ruthenium-Catalyzed Hydrogenation of Bicarbonate in Water
journal, July 2010

  • Federsel, Christopher; Jackstell, Ralf; Boddien, Albert
  • ChemSusChem, Vol. 3, Issue 9
  • DOI: 10.1002/cssc.201000151

Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen
journal, January 2015

  • Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
  • Dalton Transactions, Vol. 44, Issue 13
  • DOI: 10.1039/C4DT03841J

Hydrogenation and electrocatalytic reduction of carbon dioxide to formate with a single Co catalyst
journal, January 2020

  • Wang, Fang; Cannon, Austin T.; Bhattacharya, Moumita
  • Chemical Communications, Vol. 56, Issue 81
  • DOI: 10.1039/D0CC04310A

Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction
journal, June 2021


Solvation Effects on Transition Metal Hydricity
journal, November 2015

  • Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b07777