Relationships between Immersion Freezing and Crystal Habit for Arctic Mixed-Phase Clouds—A Numerical Study
- Kochi University of Technology, Kami (Japan)
- University of Colorado, Boulder, CO (United States)
- Kyushu University, Fukuoka (Japan)
- University of Wisconsin, Madison, WI (United States)
The number concentration of ice particles in Arctic mixed-phase clouds is a major controlling factor of cloud lifetime. The relationships between ice nucleation mode and ice crystal habit development are not yet constrained by observations. This study uses a habit-predicting microphysical scheme within a 3D large-eddy simulation model to evaluate the relationship between immersion freezing and ice habit in a simulated Arctic mixed-phase cloud case. Three immersion freezing parameterizations are considered: a volume-dependent freezing scheme (VF), a parameterization limited to activated droplets (C-AC), and a parameterization limited to coarse aerosol particles (C-CM). Both C-AC and C-CM are based on classical nucleation theory. The freezing rate with VF is found to be greater in downdraft regions than in updraft regions due to the downdraft having a higher number concentration of large droplets. Here, the C-AC cases show active freezing of small droplets near cloud top, whereas in the C-CM cases, mainly the 8–32-μm-sized droplets freeze in updraft regions near the cloud base. Because the initial crystal size is assumed to affect the axis ratio of hexagonal plates, the VF cases produce crystals with larger axis ratios, resulting in smaller mode radii than the C-AC cases. In all cases, irregular polycrystals dominate near cloud top and a band-like structure develops within the cloud, which qualitatively agrees with previous observations. In the VF and C-CM cases, unactivated large droplets arising from coarse-mode aerosol particles contributed significantly to the freezing rate, producing an important influence on crystal habit.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center; Univ. of Colorado, Boulder, CO (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Office of Science (SC), Biological and Environmental Research (BER). Earth and Environmental Systems Science Division
- Contributing Organization:
- PNNL, BNL, ANL, ORNL
- Grant/Contract Number:
- SC0013306
- OSTI ID:
- 1895527
- Alternate ID(s):
- OSTI ID: 1671741; OSTI ID: 1673391
- Journal Information:
- Journal of the Atmospheric Sciences, Vol. 77, Issue 7; ISSN 0022-4928
- Publisher:
- American Meteorological SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
A 1D Model for Nucleation of Ice From Aerosol Particles: An Application to a Mixed-Phase Arctic Stratus Cloud Layer
Combined Effect of the Wegener–Bergeron–Findeisen Mechanism and Large Eddies on Microphysics of Mixed-Phase Stratiform Clouds