DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field

Abstract

Energy equipartition is a powerful theoretical tool for understanding astrophysical plasmas. It is invoked, for example, to measure magnetic fields in the interstellar medium (ISM), as evidence for small-scale turbulent dynamo action, and, in general, to estimate the energy budget of star-forming molecular clouds. Here, in this study, we motivate and explore the role of the volume-averaged root-mean-squared (rms) magnetic coupling term between the turbulent, δB , and large-scale, B0, fields, $$\langle$$(δB·B0)2$$\rangle$$$$_{V}^{1/2}$$. By considering the second moments of the energy balance equations we show that the rms coupling term is in energy equipartition with the volume-averaged turbulent kinetic energy for turbulence with a sub-Alfvénic large-scale field. Under the assumption of exact energy equipartition between these terms, we derive relations for the magnetic and coupling term fluctuations, which provide excellent, parameter-free agreement with time-averaged data from 280 numerical simulations of compressible magnetohydrodynamic (MHD) turbulence. Furthermore, we explore the relation between the turbulent mean field and total Alfvén Mach numbers, and demonstrate that sub-Alfvénic turbulence can only be developed through a strong, large-scale magnetic field, which supports an extremely super-Alfvénic turbulent magnetic field. This means that the magnetic field fluctuations are significantly subdominant to the velocity fluctuations in the sub-Alfvénic large-scale field regime. Throughout our study, we broadly discuss the implications for observations of magnetic fields and understanding the dynamics in the magnetized ISM.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [1]
  1. Australian National Univ., Canberra, ACT (Australia)
  2. Australian National Univ., Canberra, ACT (Australia); Australian Research Council Centre of Excellence in All Sky Astrophysics (ASTRO3D), Canberra, ACT (Australia)
  3. Foundation for Research & Technology-Hellas, Heraklion (Greece); Univ. of Crete, Heraklion (Greece)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); European Research Council (ERC); Australian Research Council
OSTI Identifier:
1891223
Report Number(s):
LLNL-JRNL-832066
Journal ID: ISSN 0035-8711; 1048412; TRN: US2310105
Grant/Contract Number:  
AC52-07NA27344; 771282; FT180100495; DP190101258
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 515; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; astronomy; astrophysics; dynamo; MHD; turbulence; kinematics and dynamics; magnetic fields

Citation Formats

Beattie, James R., Krumholz, Mark R., Skalidis, Raphael, Federrath, Christoph, Seta, Amit, Crocker, Roland M., Mocz, Philip, and Kriel, Neco. Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field. United States: N. p., 2022. Web. doi:10.1093/mnras/stac2099.
Beattie, James R., Krumholz, Mark R., Skalidis, Raphael, Federrath, Christoph, Seta, Amit, Crocker, Roland M., Mocz, Philip, & Kriel, Neco. Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field. United States. https://doi.org/10.1093/mnras/stac2099
Beattie, James R., Krumholz, Mark R., Skalidis, Raphael, Federrath, Christoph, Seta, Amit, Crocker, Roland M., Mocz, Philip, and Kriel, Neco. Thu . "Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field". United States. https://doi.org/10.1093/mnras/stac2099. https://www.osti.gov/servlets/purl/1891223.
@article{osti_1891223,
title = {Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field},
author = {Beattie, James R. and Krumholz, Mark R. and Skalidis, Raphael and Federrath, Christoph and Seta, Amit and Crocker, Roland M. and Mocz, Philip and Kriel, Neco},
abstractNote = {Energy equipartition is a powerful theoretical tool for understanding astrophysical plasmas. It is invoked, for example, to measure magnetic fields in the interstellar medium (ISM), as evidence for small-scale turbulent dynamo action, and, in general, to estimate the energy budget of star-forming molecular clouds. Here, in this study, we motivate and explore the role of the volume-averaged root-mean-squared (rms) magnetic coupling term between the turbulent, δB , and large-scale, B0, fields, $\langle$(δB·B0)2$\rangle$$_{V}^{1/2}$. By considering the second moments of the energy balance equations we show that the rms coupling term is in energy equipartition with the volume-averaged turbulent kinetic energy for turbulence with a sub-Alfvénic large-scale field. Under the assumption of exact energy equipartition between these terms, we derive relations for the magnetic and coupling term fluctuations, which provide excellent, parameter-free agreement with time-averaged data from 280 numerical simulations of compressible magnetohydrodynamic (MHD) turbulence. Furthermore, we explore the relation between the turbulent mean field and total Alfvén Mach numbers, and demonstrate that sub-Alfvénic turbulence can only be developed through a strong, large-scale magnetic field, which supports an extremely super-Alfvénic turbulent magnetic field. This means that the magnetic field fluctuations are significantly subdominant to the velocity fluctuations in the sub-Alfvénic large-scale field regime. Throughout our study, we broadly discuss the implications for observations of magnetic fields and understanding the dynamics in the magnetized ISM.},
doi = {10.1093/mnras/stac2099},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 515,
place = {United States},
year = {Thu Jul 28 00:00:00 EDT 2022},
month = {Thu Jul 28 00:00:00 EDT 2022}
}

Works referenced in this record:

FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

Saturation mechanism of the fluctuation dynamo at Pr M     1
journal, April 2020


The neutral atomic phases of the interstellar medium
journal, April 1995

  • Wolfire, M. G.; Hollenbach, D.; McKee, C. F.
  • The Astrophysical Journal, Vol. 443
  • DOI: 10.1086/175510

Mapping the magnetic field in the Taurus/B211 filamentary cloud with SOFIA HAWC + and comparing with simulation
journal, November 2021

  • Li, Pak Shing; Lopez-Rodriguez, Enrique; Ajeddig, Hamza
  • Monthly Notices of the Royal Astronomical Society, Vol. 510, Issue 4
  • DOI: 10.1093/mnras/stab3448

Search for magnetic monopoles produced via the Schwinger mechanism
journal, February 2022


First extragalactic measurement of the turbulence driving parameter: ALMA observations of the star-forming region N159E in the Large Magellanic Cloud
journal, October 2021

  • Sharda, Piyush; Menon, Shyam H.; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society
  • DOI: 10.1093/mnras/stab3048

A general theory of turbulent fragmentation
journal, February 2013

  • Hopkins, Philip F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 430, Issue 3
  • DOI: 10.1093/mnras/sts704

The relative orientation between the magnetic field and gas density structures in non-gravitating turbulent media
journal, October 2020

  • Körtgen, Bastian; Soler, Juan D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 499, Issue 4
  • DOI: 10.1093/mnras/staa3078

Turbulent Dynamo in a Conducting Fluid and a Partially Ionized gas
journal, December 2016


A model of nonlinear evolution and saturation of the turbulent MHD dynamo
journal, January 2002


On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion
journal, January 1895

  • Reynolds, O.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 186, Issue 0
  • DOI: 10.1098/rsta.1895.0004

The impact of stellar feedback on the density and velocity structure of the interstellar medium
journal, December 2016

  • Grisdale, Kearn; Agertz, Oscar; Romeo, Alessandro B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 466, Issue 1
  • DOI: 10.1093/mnras/stw3133

Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence
journal, January 1995

  • Goldreich, P.; Sridhar, S.
  • The Astrophysical Journal, Vol. 438
  • DOI: 10.1086/175121

Inefficient star formation through turbulence, magnetic fields and feedback
journal, May 2015

  • Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 4
  • DOI: 10.1093/mnras/stv941

Cosmic ray transport in starburst galaxies
journal, February 2020

  • Krumholz, Mark R.; Crocker, Roland M.; Xu, Siyao
  • Monthly Notices of the Royal Astronomical Society, Vol. 493, Issue 2
  • DOI: 10.1093/mnras/staa493

Magnetic fields in the formation of the first stars – I. Theory versus simulation
journal, July 2020

  • McKee, Christopher F.; Stacy, Athena; Li, Pak Shing
  • Monthly Notices of the Royal Astronomical Society, Vol. 496, Issue 4
  • DOI: 10.1093/mnras/staa1903

The Strength of Interstellar Magnetic Fields
journal, March 1951


The Origin of Magnetic Fields
journal, April 1970

  • Parker, E. N.
  • The Astrophysical Journal, Vol. 160
  • DOI: 10.1086/150442

The relation between the turbulent Mach number and observed fractal dimensions of turbulent clouds
journal, July 2019

  • Beattie, James R.; Federrath, Christoph; Klessen, Ralf S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 2
  • DOI: 10.1093/mnras/stz1853

The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing
journal, October 2008

  • Federrath, Christoph; Klessen, Ralf S.; Schmidt, Wolfram
  • The Astrophysical Journal, Vol. 688, Issue 2
  • DOI: 10.1086/595280

Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows
journal, September 2011


Metallicity fluctuation statistics in the interstellar medium and young stars – I. Variance and correlation
journal, December 2017

  • Krumholz, Mark R.; Ting, Yuan-Sen
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 2
  • DOI: 10.1093/mnras/stx3286

Analytical Theory for the Initial mass Function. ii. Properties of the flow
journal, August 2009


Electron density power spectrum in the local interstellar medium
journal, April 1995

  • Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.
  • The Astrophysical Journal, Vol. 443
  • DOI: 10.1086/175515

Testing the turbulent origin of the stellar initial mass function
journal, February 2021

  • Nam, Donghee G.; Federrath, Christoph; Krumholz, Mark R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 503, Issue 1
  • DOI: 10.1093/mnras/stab505

Distribution of Velocity Gradient Orientations: Mapping Magnetization with the Velocity Gradient Technique
journal, September 2018


Magnetic field amplification by small-scale dynamo action: Dependence on turbulence models and Reynolds and Prandtl numbers
journal, February 2012

  • Schober, Jennifer; Schleicher, Dominik; Federrath, Christoph
  • Physical Review E, Vol. 85, Issue 2
  • DOI: 10.1103/PhysRevE.85.026303

The RWST, a comprehensive statistical description of the non-Gaussian structures in the ISM
journal, September 2019


The Star Formation Rate in the Gravoturbulent Interstellar Medium
journal, August 2018


The Initial Conditions for Planet Formation: Turbulence Driven by Hydrodynamical Instabilities in Disks around Young Stars
journal, June 2019

  • Lyra, Wladimir; Umurhan, Orkan M.
  • Publications of the Astronomical Society of the Pacific, Vol. 131, Issue 1001
  • DOI: 10.1088/1538-3873/aaf5ff

High-Resolution Simulations of Nonhelical MHD Turbulence
journal, January 2004


scikit-image: image processing in Python
journal, January 2014

  • van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan
  • PeerJ, Vol. 2
  • DOI: 10.7717/peerj.453

The Generation of Strong Magnetic Fields During the Formation of the First Stars
journal, September 2010


On the effective turbulence driving mode of molecular clouds formed in disc galaxies
journal, March 2017

  • Jin, Keitaro; Salim, Diane M.; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 469, Issue 1
  • DOI: 10.1093/mnras/stx737

Random Walk of Magnetic Lines of Force in Astrophysics
journal, July 1968


Toward a theory of interstellar turbulence. 1: Weak Alfvenic turbulence
journal, September 1994

  • Sridhar, S.; Goldreich, P.
  • The Astrophysical Journal, Vol. 432
  • DOI: 10.1086/174600

A new Jeans Resolution Criterion for (M)Hd Simulations of Self-Gravitating gas: Application to Magnetic Field Amplification by Gravity-Driven Turbulence
journal, March 2011

  • Federrath, Christoph; Sur, Sharanya; Schleicher, Dominik R. G.
  • The Astrophysical Journal, Vol. 731, Issue 1
  • DOI: 10.1088/0004-637X/731/1/62

Simulations of the Small‐Scale Turbulent Dynamo
journal, September 2004

  • Schekochihin, Alexander A.; Cowley, Steven C.; Taylor, Samuel F.
  • The Astrophysical Journal, Vol. 612, Issue 1
  • DOI: 10.1086/422547

From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey
journal, July 2010


The stellar initial mass function, core mass function and the last-crossing distribution
journal, May 2012


Magnetic field strength distribution in interplanetary turbulence
journal, March 2000

  • Hartlep, T.; Matthaeus, W. H.; Padhye, N. S.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A3
  • DOI: 10.1029/1999JA000223

Turbulent driving scales in molecular clouds
journal, July 2009


A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests
journal, May 2011

  • Waagan, K.; Federrath, C.; Klingenberg, C.
  • Journal of Computational Physics, Vol. 230, Issue 9
  • DOI: 10.1016/j.jcp.2011.01.026

The structure and statistics of interstellar turbulence
journal, June 2017


On the universality of supersonic turbulence
journal, September 2013

  • Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 2
  • DOI: 10.1093/mnras/stt1644

A method for reconstructing the variance of a 3D physical field from 2D observations: application to turbulence in the interstellar medium
journal, April 2010


The star Formation rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations
journal, December 2012


A multishock model for the density variance of anisotropic, highly magnetized, supersonic turbulence
journal, April 2021

  • Beattie, James R.; Mocz, Philip; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 504, Issue 3
  • DOI: 10.1093/mnras/stab1037

Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients
journal, October 2011

  • Gaensler, B. M.; Haverkorn, M.; Burkhart, B.
  • Nature, Vol. 478, Issue 7368
  • DOI: 10.1038/nature10446

The Effect of Supernovae on the Turbulence and Dispersal of Molecular Clouds
journal, November 2020

  • Lu, Zu-Jia; Pelkonen, Veli-Matti; Padoan, Paolo
  • The Astrophysical Journal, Vol. 904, Issue 1
  • DOI: 10.3847/1538-4357/abbd8f

Matplotlib: A 2D Graphics Environment
journal, January 2007


Filaments and striations: anisotropies in observed, supersonic, highly magnetized turbulent clouds
journal, December 2019

  • Beattie, James R.; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 1
  • DOI: 10.1093/mnras/stz3377

The relative orientation between the magnetic field and gradients of surface brightness within thin velocity slices of 12CO and 13CO emission from the Taurus molecular cloud
journal, June 2020

  • Heyer, M.; Soler, J. D.; Burkhart, B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 496, Issue 4
  • DOI: 10.1093/mnras/staa1760

Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B
journal, March 2017


Supernova Driving. i. the Origin of Molecular Cloud Turbulence
journal, April 2016


From Primordial Seed Magnetic Fields to the Galactic Dynamo
journal, April 2019


Seed magnetic fields in turbulent small-scale dynamos
journal, September 2020

  • Seta, Amit; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 499, Issue 2
  • DOI: 10.1093/mnras/staa2978

Efficient Highly Subsonic Turbulent Dynamo and Growth of Primordial Magnetic Fields
journal, March 2021

  • Achikanath Chirakkara, Radhika; Federrath, Christoph; Trivedi, Pranjal
  • Physical Review Letters, Vol. 126, Issue 9
  • DOI: 10.1103/PhysRevLett.126.091103

The Turbulent Dynamo in Highly Compressible Supersonic Plasmas
journal, December 2014

  • Federrath, Christoph; Schober, Jennifer; Bovino, Stefano
  • The Astrophysical Journal, Vol. 797, Issue 2
  • DOI: 10.1088/2041-8205/797/2/L19

Algorithmic comparisons of decaying, isothermal, supersonic turbulence
journal, October 2009


A method for reconstructing the PDF of a 3D turbulent density field from 2D observations: PDF of a 3D density field from 2D observation
journal, April 2010

  • Brunt, Christopher M.; Federrath, Christoph; Price, Daniel J.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 405, Issue 1
  • DOI: 10.1111/j.1745-3933.2010.00858.x

A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves
journal, March 2010

  • Bouchut, François; Klingenberg, Christian; Waagan, Knut
  • Numerische Mathematik, Vol. 115, Issue 4
  • DOI: 10.1007/s00211-010-0289-4

The link Between Turbulence, Magnetic Fields, Filaments, and star Formation in the Central Molecular zone Cloud G0.253+0.016
journal, November 2016


The driving of turbulence in simulations of molecular cloud formation and evolution
journal, August 2017

  • Körtgen, Bastian; Federrath, Christoph; Banerjee, Robi
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 2
  • DOI: 10.1093/mnras/stx2208

An observational method to measure the relative fractions of solenoidal and compressible modes in interstellar clouds
journal, June 2014

  • Brunt, C. M.; Federrath, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 2
  • DOI: 10.1093/mnras/stu888

The Solar Wind as a Turbulence Laboratory
journal, January 2013

  • Bruno, Roberto; Carbone, Vincenzo
  • Living Reviews in Solar Physics, Vol. 10
  • DOI: 10.12942/lrsp-2013-2

Spectrum of Magnetohydrodynamic Turbulence
journal, March 2006


The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function
journal, February 2019

  • Krumholz, Mark R.; Federrath, Christoph
  • Frontiers in Astronomy and Space Sciences, Vol. 6
  • DOI: 10.3389/fspas.2019.00007

The Role of Magnetic Field in Molecular Cloud Formation and Evolution
journal, March 2019

  • Hennebelle, Patrick; Inutsuka, Shu-ichiro
  • Frontiers in Astronomy and Space Sciences, Vol. 6
  • DOI: 10.3389/fspas.2019.00005

WHAT DETERMINES THE DENSITY STRUCTURE OF MOLECULAR CLOUDS? A CASE STUDY OF ORION B WITH HERSCHEL
journal, March 2013


On the compressive nature of turbulence driven by ionizing feedback in the pillars of the Carina Nebula
journal, October 2020

  • Menon, Shyam H.; Federrath, Christoph; Klaassen, Pamela
  • Monthly Notices of the Royal Astronomical Society, Vol. 500, Issue 2
  • DOI: 10.1093/mnras/staa3271

The magnetic field and dust filaments in the Polaris Flare
journal, August 2016

  • Panopoulou, G. V.; Psaradaki, I.; Tassis, K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 462, Issue 2
  • DOI: 10.1093/mnras/stw1678

Dynamo theories
journal, August 2019


Thermal and Fragmentation Properties of Star‐forming Clouds in Low‐Metallicity Environments
journal, June 2005

  • Omukai, K.; Tsuribe, T.; Schneider, R.
  • The Astrophysical Journal, Vol. 626, Issue 2
  • DOI: 10.1086/429955

Do Androids Dream of Magnetic Fields? Using Neural Networks to Interpret the Turbulent Interstellar Medium
journal, September 2019


Kinematics of the molecular interstellar medium probed by Gaia: steep velocity dispersion–size relation, isotropic turbulence, and location-dependent energy dissipation
journal, April 2022

  • Zhou, Ji-Xuan; Li, Guang-Xing; Chen, Bing-Qiu
  • Monthly Notices of the Royal Astronomical Society, Vol. 513, Issue 1
  • DOI: 10.1093/mnras/stac900

Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores
journal, March 2011


Magnetic field morphology in interstellar clouds with the velocity gradient technique
journal, June 2019


Is turbulence in the interstellar medium driven by feedback or gravity? An observational test
journal, March 2016

  • Krumholz, Mark R.; Burkhart, Blakesley
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 2
  • DOI: 10.1093/mnras/stw434

Comparing the statistics of interstellar turbulence in simulations and observations: Solenoidal versus compressive turbulence forcing
journal, March 2010


Impact of galactic shear and stellar feedback on star formation
journal, November 2018


Magnetic Fields in Spiral Arms.
journal, July 1953

  • Chandrasekhar, S.; Fermi, E.
  • The Astrophysical Journal, Vol. 118
  • DOI: 10.1086/145731

Weakly Compressible Magnetohydrodynamic Turbulence in the Solar Wind and the Interstellar Medium
journal, February 1998

  • Bhattacharjee, A.; Ng, C. S.; Spangler, S. R.
  • The Astrophysical Journal, Vol. 494, Issue 1
  • DOI: 10.1086/305184

Cosmic ray scattering in compressible turbulence
journal, November 2006


Star formation from dense shocked regions in supersonic isothermal magnetoturbulence
journal, July 2018

  • Mocz, Philip; Burkhart, Blakesley
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 3
  • DOI: 10.1093/mnras/sty1976

An Imprint of Molecular Cloud Magnetization in the Morphology of the dust Polarized Emission
journal, August 2013


SciPy 1.0: fundamental algorithms for scientific computing in Python
journal, February 2020


Pregalactic metal enrichment: The chemical signatures of the first stars
journal, May 2013

  • Karlsson, Torgny; Bromm, Volker; Bland-Hawthorn, Joss
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.809

The origin, evolution and signatures of primordial magnetic fields
journal, May 2016


A General Theory of Turbulence‐regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies
journal, September 2005

  • Krumholz, Mark R.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 630, Issue 1
  • DOI: 10.1086/431734

Equiparatition of energy for turbulent astrophysical fluids: Accounting for the unseen energy in molecular clouds
journal, February 1995

  • Zweibel, Ellen G.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 439
  • DOI: 10.1086/175216

Fundamental scales in the kinematic phase of the turbulent dynamo
journal, April 2022

  • Kriel, Neco; Beattie, James R.; Seta, Amit
  • Monthly Notices of the Royal Astronomical Society, Vol. 513, Issue 2
  • DOI: 10.1093/mnras/stac969

Testing physical models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic turbulence at ∼GeV energies
journal, November 2020

  • Hopkins, Philip F.; Squire, Jonathan; Chan, T. K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 501, Issue 3
  • DOI: 10.1093/mnras/staa3691

Magnetic field amplification in turbulent astrophysical plasmas
journal, November 2016


Inertial-Range Spectrum of Hydromagnetic Turbulence
journal, January 1965


Turbulence in the interstellar medium
journal, January 2014

  • Falceta-Gonçalves, D.; Kowal, G.; Falgarone, E.
  • Nonlinear Processes in Geophysics, Vol. 21, Issue 3
  • DOI: 10.5194/npg-21-587-2014

The link between magnetic fields and filamentary clouds: bimodal cloud orientations in the Gould Belt
journal, November 2013

  • Li, Hua-bai; Fang, Min; Henning, Thomas
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 4
  • DOI: 10.1093/mnras/stt1849

Classification of Magnetohydrodynamic Simulations Using Wavelet Scattering Transforms
journal, April 2021

  • Saydjari, Andrew K.; Portillo, Stephen K. N.; Slepian, Zachary
  • The Astrophysical Journal, Vol. 910, Issue 2
  • DOI: 10.3847/1538-4357/abe46d

Saturation mechanism of the fluctuation dynamo in supersonic turbulent plasmas
journal, October 2021


Array programming with NumPy
journal, September 2020

  • Harris, Charles R.; Millman, K. Jarrod; van der Walt, Stéfan J.
  • Nature, Vol. 585, Issue 7825
  • DOI: 10.1038/s41586-020-2649-2

Turbulence: the filtering approach
journal, May 1992


Diagnosing Turbulence in the Neutral and Molecular Interstellar Medium of Galaxies
journal, October 2021

  • Burkhart, Blakesley
  • Publications of the Astronomical Society of the Pacific, Vol. 133, Issue 1028
  • DOI: 10.1088/1538-3873/ac25cf

Cython: The Best of Both Worlds
journal, March 2011

  • Behnel, Stefan; Bradshaw, Robert; Citro, Craig
  • Computing in Science & Engineering, Vol. 13, Issue 2
  • DOI: 10.1109/MCSE.2010.118

How Galactic Environment Affects the Dynamical State of Molecular Clouds and Their Star Formation Efficiency
journal, September 2019

  • Schruba, Andreas; Kruijssen, J. M. Diederik; Leroy, Adam K.
  • The Astrophysical Journal, Vol. 883, Issue 1
  • DOI: 10.3847/1538-4357/ab3a43

Saturation of the turbulent dynamo
journal, August 2015


The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region
journal, May 2021


The star Formation rate of Supersonic Magnetohydrodynamic Turbulence
journal, March 2011


Magnetic field fluctuations in anisotropic, supersonic turbulence
journal, August 2020

  • Beattie, James R.; Federrath, Christoph; Seta, Amit
  • Monthly Notices of the Royal Astronomical Society, Vol. 498, Issue 2
  • DOI: 10.1093/mnras/staa2257

Magnetic Fields in Star Formation: A Complete Compilation of All the DCF Estimations
journal, January 2022


Magnetic fields in the Milky Way from pulsar observations: effect of the correlation between thermal electrons and magnetic fields
journal, January 2021

  • Seta, Amit; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 502, Issue 2
  • DOI: 10.1093/mnras/stab128

The sonic scale of interstellar turbulence
journal, January 2021