DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene

Abstract

The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we explored the fluorination of peripheral aryl groups to increase intermolecular cofacial π–π stacking interactions, which are desirable for electron transport. Here complexes with fluorine on the distal phenyls [Zn(1F-L2)2], on the naphthyls [Zn(2F-L2)2], and on both [Zn(3F-L2)2] were synthesized and characterized. All three complexes had similar optical and electrochemical properties. The crystal packing structure of Zn(2F-L2)2 and Zn(3F-L2)2 revealed cofacial parallel-displaced π–π stacking between the fluorinated 1-naphthylethynyl groups. Such a cofacial orientation was not observed in Zn(L2)2 crystals, suggesting that fluorination of the naphthyl groups promotes the cofacial π–π stacking orientation. The hole mobility increased from 1.0 × 10–4 cm2 V–1 s–1 for Zn(L2)2 to 0.8–1.0 × 10–3 cm2 V–1 s–1 for the fluorinated complexes. Fluorination on the naphthyl groups increased the electron mobility from 4.2 × 10–5 cm2 V–1 s–1 for Zn(L2)2 and Zn(1F-L2)2 to 2.0 × 10–4 cm2 V–1 s–1 for Zn(2F-L2)2 and Zn(3F-L2)2, consistent with cofacial π–π stacking being favorable for electron transport. The three complexes were tested in OPVs using regioregular poly(3-hexylthiophene)more » (P3HT) as the p-type material, and the best power conversion efficiencies were 5.2, 5.4, and 5.8% for Zn(2F-L2)2, Zn(1F-L2)2, and Zn(3F-L2)2, respectively, compared to 5.5% for Zn(L2)2. The fluorination combination found in Zn(3F-L2)2 resulted in the best device performance. This study points to a viable strategy to increase the electron mobility and performance of non-planar zinc(II) complexes of azadipyrromethene.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Case Western Reserve Univ., Cleveland, OH (United States)
  2. Univ. of California, San Diego, La Jolla, CA (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1889631
Report Number(s):
BNL-223441-2022-JAAM
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
SC0012704; CHEM 1904868; MRI-0821515; MRI-1334048
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 126; Journal Issue: 15; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; charge transport; halogenation; mobility; molecules; organic polymers

Citation Formats

Zhao, Muyuan, Jimenez, Jayvic C., Wang, Chunlai, Rui, Guanchun, Ma, Tingrui, Lu, Chenwei, Rheingold, Arnold L., Li, Ruipeng, Zhu, Lei, and Sauvé, Geneviève. Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene. United States: N. p., 2022. Web. doi:10.1021/acs.jpcc.1c09734.
Zhao, Muyuan, Jimenez, Jayvic C., Wang, Chunlai, Rui, Guanchun, Ma, Tingrui, Lu, Chenwei, Rheingold, Arnold L., Li, Ruipeng, Zhu, Lei, & Sauvé, Geneviève. Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene. United States. https://doi.org/10.1021/acs.jpcc.1c09734
Zhao, Muyuan, Jimenez, Jayvic C., Wang, Chunlai, Rui, Guanchun, Ma, Tingrui, Lu, Chenwei, Rheingold, Arnold L., Li, Ruipeng, Zhu, Lei, and Sauvé, Geneviève. Wed . "Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene". United States. https://doi.org/10.1021/acs.jpcc.1c09734. https://www.osti.gov/servlets/purl/1889631.
@article{osti_1889631,
title = {Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene},
author = {Zhao, Muyuan and Jimenez, Jayvic C. and Wang, Chunlai and Rui, Guanchun and Ma, Tingrui and Lu, Chenwei and Rheingold, Arnold L. and Li, Ruipeng and Zhu, Lei and Sauvé, Geneviève},
abstractNote = {The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we explored the fluorination of peripheral aryl groups to increase intermolecular cofacial π–π stacking interactions, which are desirable for electron transport. Here complexes with fluorine on the distal phenyls [Zn(1F-L2)2], on the naphthyls [Zn(2F-L2)2], and on both [Zn(3F-L2)2] were synthesized and characterized. All three complexes had similar optical and electrochemical properties. The crystal packing structure of Zn(2F-L2)2 and Zn(3F-L2)2 revealed cofacial parallel-displaced π–π stacking between the fluorinated 1-naphthylethynyl groups. Such a cofacial orientation was not observed in Zn(L2)2 crystals, suggesting that fluorination of the naphthyl groups promotes the cofacial π–π stacking orientation. The hole mobility increased from 1.0 × 10–4 cm2 V–1 s–1 for Zn(L2)2 to 0.8–1.0 × 10–3 cm2 V–1 s–1 for the fluorinated complexes. Fluorination on the naphthyl groups increased the electron mobility from 4.2 × 10–5 cm2 V–1 s–1 for Zn(L2)2 and Zn(1F-L2)2 to 2.0 × 10–4 cm2 V–1 s–1 for Zn(2F-L2)2 and Zn(3F-L2)2, consistent with cofacial π–π stacking being favorable for electron transport. The three complexes were tested in OPVs using regioregular poly(3-hexylthiophene) (P3HT) as the p-type material, and the best power conversion efficiencies were 5.2, 5.4, and 5.8% for Zn(2F-L2)2, Zn(1F-L2)2, and Zn(3F-L2)2, respectively, compared to 5.5% for Zn(L2)2. The fluorination combination found in Zn(3F-L2)2 resulted in the best device performance. This study points to a viable strategy to increase the electron mobility and performance of non-planar zinc(II) complexes of azadipyrromethene.},
doi = {10.1021/acs.jpcc.1c09734},
journal = {Journal of Physical Chemistry. C},
number = 15,
volume = 126,
place = {United States},
year = {Wed Apr 06 00:00:00 EDT 2022},
month = {Wed Apr 06 00:00:00 EDT 2022}
}

Works referenced in this record:

Polymer-Fullerene Bulk-Heterojunction Solar Cells
journal, August 2010

  • Brabec, Christoph J.; Gowrisanker, Srinivas; Halls, Jonathan J. M.
  • Advanced Materials, Vol. 22, Issue 34
  • DOI: 10.1002/adma.200903697

BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties
journal, November 2007

  • Loudet, Aurore; Burgess, Kevin
  • Chemical Reviews, Vol. 107, Issue 11
  • DOI: 10.1021/cr078381n

The Curious Case of Fluorination of Conjugated Polymers for Solar Cells
journal, August 2017


Fused-Ring Electron Acceptors for Photovoltaics and Beyond
journal, December 2020


8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer
journal, March 2014

  • Cnops, Kjell; Rand, Barry P.; Cheyns, David
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4406

Azadipyrromethene-Based Zn(II) Complexes as Nonplanar Conjugated Electron Acceptors for Organic Photovoltaics
journal, July 2014

  • Mao, Zhenghao; Senevirathna, Wasana; Liao, Jia-Yu
  • Advanced Materials, Vol. 26, Issue 36
  • DOI: 10.1002/adma.201400647

Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics
journal, January 2016

  • Etheridge, Forrest S.; Fernando, Roshan J.; Pejić, Sandra
  • Beilstein Journal of Organic Chemistry, Vol. 12
  • DOI: 10.3762/bjoc.12.182

The rotational spectrum, structure and dynamics of a benzene dimer
journal, March 1993

  • Arunan, E.; Gutowsky, H. S.
  • The Journal of Chemical Physics, Vol. 98, Issue 5
  • DOI: 10.1063/1.465035

Recent progress of PM6:Y6-based high efficiency organic solar cells
journal, April 2021


Electronic Structures and Charge Transport of Stacked Annelated β-Trithiophenes
journal, November 2010

  • Liu, Hongguang; Kang, Sunwoo; Lee, Jin Yong
  • The Journal of Physical Chemistry B, Vol. 115, Issue 18
  • DOI: 10.1021/jp1045595

Recent advances, challenges and prospects in ternary organic solar cells
journal, January 2021

  • Zhao, Congcong; Wang, Jiuxing; Zhao, Xuanyi
  • Nanoscale, Vol. 13, Issue 4
  • DOI: 10.1039/d0nr07788g

Simple Non‐Fused Electron Acceptors Leading to Efficient Organic Photovoltaics
journal, May 2021

  • Wen, Tian‐Jiao; Liu, Zhi‐Xi; Chen, Zeng
  • Angewandte Chemie International Edition, Vol. 60, Issue 23
  • DOI: 10.1002/anie.202101867

Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit
journal, January 2018

  • Li, Ning; McCulloch, Iain; Brabec, Christoph J.
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/c8ee00151k

Achieving over 10 % Efficiency in Poly(3‐hexylthiophene)‐Based Organic Solar Cells via Solid Additives
journal, June 2021


Effect of molecular packing of zinc(II) porphyrins on the performance of field-effect transistors
journal, November 2014

  • Hoang, Mai Ha; Ngo, Trinh Tung; Nguyen, Duc Nghia
  • Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 5, Issue 4
  • DOI: 10.1088/2043-6262/5/4/045012

Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells
journal, July 2020

  • Zhu, Weigang; Spencer, Austin P.; Mukherjee, Subhrangsu
  • Journal of the American Chemical Society, Vol. 142, Issue 34
  • DOI: 10.1021/jacs.0c05560

Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene
journal, August 2008

  • Wheeler, Steven E.; Houk, K. N.
  • Journal of the American Chemical Society, Vol. 130, Issue 33
  • DOI: 10.1021/ja802849j

fac-Tricarbonyl Rhenium(I) Azadipyrromethene Complexes
journal, September 2009

  • Partyka, David V.; Deligonul, Nihal; Washington, Marlena P.
  • Organometallics, Vol. 28, Issue 20
  • DOI: 10.1021/om900552e

Azadipyrromethenes: from traditional dye chemistry to leading edge applications
journal, January 2016

  • Ge, Yuan; O'Shea, Donal F.
  • Chemical Society Reviews, Vol. 45, Issue 14
  • DOI: 10.1039/c6cs00200e

Density Functional Theory Study Predicts Low Reorganization Energies for Azadipyrromethene-Based Metal Complexes
journal, February 2014

  • Senevirathna, Wasana; Daddario, Cassie M.; Sauvé, Geneviève
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 5
  • DOI: 10.1021/jz402735c

Synthesis of Fullerene Derivatives for the Application to Organic Photovoltaic Cell and n-Channel Organic Thin-Film Transistors
journal, February 2016

  • Yun, Jin-Mun; Kim, Dong-Yu; Noh, Yong-Young
  • Science of Advanced Materials, Vol. 8, Issue 2
  • DOI: 10.1166/sam.2016.2537

Substituent Effects in π−π Interactions:  Sandwich and T-Shaped Configurations
journal, June 2004

  • Sinnokrot, Mutasem Omar; Sherrill, C. David
  • Journal of the American Chemical Society, Vol. 126, Issue 24
  • DOI: 10.1021/ja049434a

Enhancing charge mobilities in organic semiconductors by selective fluorination: a design approach based on a quantum mechanical perspective
journal, January 2017

  • Maiti, Buddhadev; Schubert, Alexander; Sarkar, Sunandan
  • Chem. Sci., Vol. 8, Issue 10
  • DOI: 10.1039/c7sc02491f

Pinpoint-Fluorinated Phenacenes: New Synthesis and Solubility Enhancement Strategies
journal, February 2015

  • Fuchibe, Kohei; Morikawa, Toshiyuki; Shigeno, Kento
  • Organic Letters, Vol. 17, Issue 5
  • DOI: 10.1021/ol503759d

The role of chemical design in the performance of organic semiconductors
journal, January 2020

  • Bronstein, Hugo; Nielsen, Christian B.; Schroeder, Bob C.
  • Nature Reviews Chemistry, Vol. 4, Issue 2
  • DOI: 10.1038/s41570-019-0152-9

Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks
journal, July 2017


The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques
journal, February 2014


A zinc( ii ) complex of di(naphthylethynyl)azadipyrromethene with low synthetic complexity leads to OPV with high industrial accessibility
journal, January 2019

  • Wang, Chunlai; Wei, Peiran; Ngai, Jenner H. L.
  • Journal of Materials Chemistry A, Vol. 7, Issue 42
  • DOI: 10.1039/c9ta08654d

Effect of traps on the performance of bulk heterojunction organic solar cells
journal, December 2007

  • Mandoc, M. M.; Kooistra, F. B.; Hummelen, J. C.
  • Applied Physics Letters, Vol. 91, Issue 26
  • DOI: 10.1063/1.2821368

Organic solar cells based on a novel infrared absorbing aza-bodipy dye
journal, April 2012


Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells
journal, October 2017


Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale
journal, June 2012

  • Rivnay, Jonathan; Mannsfeld, Stefan C. B.; Miller, Chad E.
  • Chemical Reviews, Vol. 112, Issue 10
  • DOI: 10.1021/cr3001109

Electronic sensing of vapors with organic transistors
journal, April 2001

  • Crone, B.; Dodabalapur, A.; Gelperin, A.
  • Applied Physics Letters, Vol. 78, Issue 15
  • DOI: 10.1063/1.1360785

“All That Glisters Is Not Gold”: An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells
journal, January 2015

  • Po, Riccardo; Bianchi, Gabriele; Carbonera, Chiara
  • Macromolecules, Vol. 48, Issue 3
  • DOI: 10.1021/ma501894w

Co(ii), Ni(ii), Cu(ii) and Zn(ii) complexes of tetraphenylazadipyrromethene
journal, January 2009

  • Palma, Aniello; Gallagher, John F.; Müller-Bunz, Helge
  • Dalton Trans., Issue 2
  • DOI: 10.1039/b811764k

Identifying the Nature of Charge Recombination in Organic Solar Cells from Charge‐Transfer State Electroluminescence
journal, May 2012

  • Wetzelaer, Gert‐Jan A. H.; Kuik, Martijn; Blom, Paul W. M.
  • Advanced Energy Materials, Vol. 2, Issue 10
  • DOI: 10.1002/aenm.201200009

Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells
journal, March 2005

  • Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.
  • Applied Physics Letters, Vol. 86, Issue 12
  • DOI: 10.1063/1.1889240

Boron Subphthalocyanines as Organic Electronic Materials
journal, September 2012

  • Morse, Graham E.; Bender, Timothy P.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 10
  • DOI: 10.1021/am3015197

Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency
journal, November 2013

  • Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03356

Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport
journal, April 2002

  • Bredas, J. L.; Calbert, J. P.; da Silva Filho, D. A.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 9
  • DOI: 10.1073/pnas.092143399

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells
journal, February 2018


Recent Advances in Bulk Heterojunction Polymer Solar Cells
journal, August 2015


Stability: next focus in organic solar cells based on non-fullerene acceptors
journal, January 2021

  • Li, Yawen; Li, Tengfei; Lin, Yuze
  • Materials Chemistry Frontiers, Vol. 5, Issue 7
  • DOI: 10.1039/d1qm00027f

Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes
journal, November 2015


Organic field‐effect transistors with high mobility based on copper phthalocyanine
journal, November 1996

  • Bao, Zhenan; Lovinger, Andrew J.; Dodabalapur, Ananth
  • Applied Physics Letters, Vol. 69, Issue 20
  • DOI: 10.1063/1.116841

Interlayers for non-fullerene based polymer solar cells: distinctive features and challenges
journal, January 2021

  • Sorrentino, Roberto; Kozma, Erika; Luzzati, Silvia
  • Energy & Environmental Science, Vol. 14, Issue 1
  • DOI: 10.1039/d0ee02503h

Highly Efficient Non-Fused-Ring Electron Acceptors Enabled by the Conformational Lock and Structural Isomerization Effects
journal, May 2021

  • Zhao, Jun; Xu, Xiaopeng; Yu, Liyang
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 21
  • DOI: 10.1021/acsami.1c06299

Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution
journal, December 2015

  • Dou, Jin-Hu; Zheng, Yu-Qing; Yao, Ze-Fan
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b11114

Effects of Aromatic Trifluoromethylation, Fluorination, and Methylation on Intermolecular π–π Interactions
journal, July 2013

  • Mottishaw, Jeffery D.; Sun, Haoran
  • The Journal of Physical Chemistry A, Vol. 117, Issue 33
  • DOI: 10.1021/jp403679x

Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells
journal, February 2017

  • Liu, Yahui; Zhang, Zhe; Feng, Shiyu
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.7b00566

Next-generation organic photovoltaics based on non-fullerene acceptors
journal, February 2018


Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent
journal, May 2021

  • Xiao, Jingyang; Jia, Xiao'e; Duan, Chunhui
  • Advanced Materials, Vol. 33, Issue 25
  • DOI: 10.1002/adma.202008158

Structure of the Lowest Temperature Phase of the Solid Benzene–Hexafluorobenzene Adduct
journal, December 1992

  • Williams, Jeffrey Huw; Cockcroft, Jeremy Karl; Fitch, Andrew Nicholas
  • Angewandte Chemie International Edition in English, Vol. 31, Issue 12
  • DOI: 10.1002/anie.199216551

P-19: High Performance Porphyrin Semiconductor for Transistor Applications
journal, January 2005

  • Aramaki, Shinji; Yoshiyama, Ruichi; Sakai, Masayoshi
  • SID Symposium Digest of Technical Papers, Vol. 36, Issue 1
  • DOI: 10.1889/1.2036429

Charge carrier recombination in organic solar cells
journal, December 2013


Structure–Property Study of Homoleptic Zinc(II) Complexes of Di(arylethynyl) Azadipyrromethene as Nonfullerene Acceptors for Organic Photovoltaics: Effect of the Aryl Group
journal, March 2020

  • Wang, Chunlai; Zhao, Muyuan; Rheingold, Arnold L.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 16
  • DOI: 10.1021/acs.jpcc.0c00401

From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective
journal, January 2014

  • Po, Riccardo; Bernardi, Andrea; Calabrese, Anna
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43460e

Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors
journal, April 2013

  • Mei, Jianguo; Diao, Ying; Appleton, Anthony L.
  • Journal of the American Chemical Society, Vol. 135, Issue 18
  • DOI: 10.1021/ja400881n