DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt

Abstract

Abstract Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous “on-the-fly” training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H 2 turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1885166
Alternate Identifier(s):
OSTI ID: 1904468
Grant/Contract Number:  
SC0020128; SC0012573; AC02-05CH11231; 1808162; 2003725; DGE1745303
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 13 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
42 ENGINEERING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; computational methods; molecular dynamics

Citation Formats

Vandermause, Jonathan, Xie, Yu, Lim, Jin Soo, Owen, Cameron J., and Kozinsky, Boris. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt. United Kingdom: N. p., 2022. Web. doi:10.1038/s41467-022-32294-0.
Vandermause, Jonathan, Xie, Yu, Lim, Jin Soo, Owen, Cameron J., & Kozinsky, Boris. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt. United Kingdom. https://doi.org/10.1038/s41467-022-32294-0
Vandermause, Jonathan, Xie, Yu, Lim, Jin Soo, Owen, Cameron J., and Kozinsky, Boris. Fri . "Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt". United Kingdom. https://doi.org/10.1038/s41467-022-32294-0.
@article{osti_1885166,
title = {Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt},
author = {Vandermause, Jonathan and Xie, Yu and Lim, Jin Soo and Owen, Cameron J. and Kozinsky, Boris},
abstractNote = {Abstract Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous “on-the-fly” training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H 2 turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment.},
doi = {10.1038/s41467-022-32294-0},
journal = {Nature Communications},
number = 1,
volume = 13,
place = {United Kingdom},
year = {Fri Sep 02 00:00:00 EDT 2022},
month = {Fri Sep 02 00:00:00 EDT 2022}
}

Works referenced in this record:

U1 snRNP regulates cancer cell migration and invasion in vitro
journal, January 2020


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Heterogeneous Catalysis: A Central Science for a Sustainable Future
journal, March 2017


Origins of structural and electronic transitions in disordered silicon
journal, January 2021


Atomic cluster expansion for accurate and transferable interatomic potentials
journal, January 2019


The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Adsorption of hydrogen on a Pt(111) surface
journal, February 1976


On representing chemical environments
journal, May 2013


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Less is more: Sampling chemical space with active learning
journal, June 2018

  • Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023802

On-the-fly machine learning force field generation: Application to melting points
journal, July 2019


Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations
journal, December 2020

  • Mihalovits, Levente M.; Ferenczy, György G.; Keserű, György M.
  • Journal of Chemical Information and Modeling, Vol. 60, Issue 12
  • DOI: 10.1021/acs.jcim.0c00834

A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals
journal, October 2015


Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


High-dimensional neural network potentials for metal surfaces: A prototype study for copper
journal, January 2012


Quasielastic helium atom scattering measurements of microscopic diffusional dynamics of H and D on the Pt(111) surface
journal, July 1999

  • Graham, Andrew P.; Menzel, Alexander; Toennies, J. Peter
  • The Journal of Chemical Physics, Vol. 111, Issue 4
  • DOI: 10.1063/1.479427

SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Atomistic Adsorption of Oxygen and Hydrogen on Platinum Catalysts by Hybrid Grand Canonical Monte Carlo/Reactive Molecular Dynamics
journal, April 2016

  • Gai, Lili; Shin, Yun Kyung; Raju, Muralikrishna
  • The Journal of Physical Chemistry C, Vol. 120, Issue 18
  • DOI: 10.1021/acs.jpcc.6b01064

Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
journal, May 2021

  • Park, Cheol Woo; Kornbluth, Mordechai; Vandermause, Jonathan
  • npj Computational Materials, Vol. 7, Issue 1
  • DOI: 10.1038/s41524-021-00543-3

Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15M1054183

Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review
journal, October 2020


On the dynamics of H 2 adsorption on the Pt(111) surface: KRAUS and FRANK
journal, May 2017

  • Kraus, Peter; Frank, Irmgard
  • International Journal of Quantum Chemistry, Vol. 117, Issue 17
  • DOI: 10.1002/qua.25407

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Atomic cluster expansion: Completeness, efficiency and stability
journal, April 2022

  • Dusson, Geneviève; Bachmayr, Markus; Csányi, Gábor
  • Journal of Computational Physics, Vol. 454
  • DOI: 10.1016/j.jcp.2022.110946

Assessing the performance of recent density functionals for bulk solids
journal, April 2009


The resurgence of covalent drugs
journal, April 2011

  • Singh, Juswinder; Petter, Russell C.; Baillie, Thomas A.
  • Nature Reviews Drug Discovery, Vol. 10, Issue 4
  • DOI: 10.1038/nrd3410

First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems
journal, August 2017


sGDML: Constructing accurate and data efficient molecular force fields using machine learning
journal, July 2019

  • Chmiela, Stefan; Sauceda, Huziel E.; Poltavsky, Igor
  • Computer Physics Communications, Vol. 240
  • DOI: 10.1016/j.cpc.2019.02.007

De novo exploration and self-guided learning of potential-energy surfaces
journal, October 2019

  • Bernstein, Noam; Csányi, Gábor; Deringer, Volker L.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0236-6

Extending the accuracy of the SNAP interatomic potential form
journal, June 2018

  • Wood, Mitchell A.; Thompson, Aidan P.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017641

Phase Transitions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly with Bayesian Inference
journal, June 2019


On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations
journal, July 2020

  • Jinnouchi, Ryosuke; Miwa, Kazutoshi; Karsai, Ferenc
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 17
  • DOI: 10.1021/acs.jpclett.0c01061

Machine Learning Estimates of Natural Product Conformational Energies
journal, January 2014


Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
journal, July 2020

  • Sivaraman, Ganesh; Krishnamoorthy, Anand Narayanan; Baur, Matthias
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-020-00367-7

Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics
journal, August 2020

  • Lim, Jin Soo; Vandermause, Jonathan; van Spronsen, Matthijs A.
  • Journal of the American Chemical Society, Vol. 142, Issue 37
  • DOI: 10.1021/jacs.0c06401

The ReaxFF reactive force-field: development, applications and future directions
journal, March 2016


Quantum and classical dynamics of reactive scattering of H 2 from metal surfaces
journal, January 2016

  • Kroes, Geert-Jan; Díaz, Cristina
  • Chemical Society Reviews, Vol. 45, Issue 13
  • DOI: 10.1039/C5CS00336A

Hydrogen and Deuterium Exchange on Pt(111) and Its Poisoning by Carbon Monoxide Studied by Surface Sensitive High-Pressure Techniques
journal, October 2006

  • Montano, Max; Bratlie, Kaitlin; Salmeron, Miquel
  • Journal of the American Chemical Society, Vol. 128, Issue 40
  • DOI: 10.1021/ja063703a

A Molecular Dynamics Study for Dissociation of H2 Molecule on Pt(111) Surface
journal, January 2012


A transferable active-learning strategy for reactive molecular force fields
journal, January 2021

  • Young, Tom A.; Johnston-Wood, Tristan; Deringer, Volker L.
  • Chemical Science, Vol. 12, Issue 32
  • DOI: 10.1039/D1SC01825F

Computational aspects of many-body potentials
journal, May 2012

  • Plimpton, Steven J.; Thompson, Aidan P.
  • MRS Bulletin, Vol. 37, Issue 5
  • DOI: 10.1557/mrs.2012.96

Ab initio molecular dynamics for liquid metals
journal, December 1995


On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
journal, March 2020

  • Vandermause, Jonathan; Torrisi, Steven B.; Batzner, Simon
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-020-0283-z

A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
journal, September 2019

  • Mailoa, Jonathan P.; Kornbluth, Mordechai; Batzner, Simon
  • Nature Machine Intelligence, Vol. 1, Issue 10
  • DOI: 10.1038/s42256-019-0098-0

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Surface and Subsurface Hydrogen:  Adsorption Properties on Transition Metals and Near-Surface Alloys
journal, March 2005

  • Greeley, Jeff; Mavrikakis, Manos
  • The Journal of Physical Chemistry B, Vol. 109, Issue 8
  • DOI: 10.1021/jp046540q

Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
journal, April 2012


A systematic DFT study of hydrogen diffusion on transition metal surfaces
journal, September 2012


Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning
journal, January 2009

  • Handley, Chris M.; Hawe, Glenn I.; Kell, Douglas B.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 30
  • DOI: 10.1039/b905748j

Hydrogen storage in carbon nanostructures via spillover
journal, November 2016


Molecular adsorption at Pt(111). How accurate are DFT functionals?
journal, January 2015

  • Gautier, Sarah; Steinmann, Stephan N.; Michel, Carine
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 43
  • DOI: 10.1039/C5CP04534G

Machine learning based interatomic potential for amorphous carbon
journal, March 2017


Active learning of uniformly accurate interatomic potentials for materials simulation
journal, February 2019


Active learning of linearly parametrized interatomic potentials
journal, December 2017


Theoretical prediction of high melting temperature for a Mo–Ru–Ta–W HCP multiprincipal element alloy
journal, January 2021