DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries

Abstract

Tailoring molecular structures of organic electrode materials (OEMs) can enhance their performance in Na-ion batteries, however, the substitution rules and the consequent effect on the specific capacity and working potential remain elusive. Herein, by examining three sodium carboxylates with selective N substitution or extended conjugation structure, we exploited the correlation between structure and performance to establish substitution rules for high-capacity OEMs. Our results show that substitution position and types of functional groups are essential to create active centers for uptake/removal of Na+ and thermodynamically stabilize organic structures. Furthermore, rational host design and electrolytes modulation were performed to extend the cycle life to 500 cycles. A full cell based on the optimal 2,2’-bipyridine-4,4’-dicarboxylic acid disodium salt anode and the polyaniline cathode is demonstrated to confirm the feasibility of achieving all-organic batteries. Lastly, this work provides a valuable guideline for the design principle of high-capacity and stable OEMs for sustainable energy storage.

Authors:
 [1];  [1]; ORCiD logo [2];  [3];  [2];  [2];  [4]; ORCiD logo [1]
  1. George Mason Univ., Fairfax, VA (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Univ. of Maryland, College Park, MD (United States)
  4. Argonne National Lab. (ANL), Lemont, IL (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office - Battery Materials Research (BMR) Program; National Science Foundation (NSF)
OSTI Identifier:
1880098
Grant/Contract Number:  
AC02-06CH11357; NSF-1726058
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 533; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Sodium carboxylate; Organic electrode materials; Na-ion batteries; Anode; Substitution rules

Citation Formats

Holguin, Kathryn, Qin, Kaiqiang, Kamphaus, Ethan Phillip, Chen, Fu, Cheng, Lei, Xu, Gui-Liang, Amine, Khalil, and Luo, Chao. Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries. United States: N. p., 2022. Web. doi:10.1016/j.jpowsour.2022.231383.
Holguin, Kathryn, Qin, Kaiqiang, Kamphaus, Ethan Phillip, Chen, Fu, Cheng, Lei, Xu, Gui-Liang, Amine, Khalil, & Luo, Chao. Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries. United States. https://doi.org/10.1016/j.jpowsour.2022.231383
Holguin, Kathryn, Qin, Kaiqiang, Kamphaus, Ethan Phillip, Chen, Fu, Cheng, Lei, Xu, Gui-Liang, Amine, Khalil, and Luo, Chao. Sun . "Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries". United States. https://doi.org/10.1016/j.jpowsour.2022.231383. https://www.osti.gov/servlets/purl/1880098.
@article{osti_1880098,
title = {Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries},
author = {Holguin, Kathryn and Qin, Kaiqiang and Kamphaus, Ethan Phillip and Chen, Fu and Cheng, Lei and Xu, Gui-Liang and Amine, Khalil and Luo, Chao},
abstractNote = {Tailoring molecular structures of organic electrode materials (OEMs) can enhance their performance in Na-ion batteries, however, the substitution rules and the consequent effect on the specific capacity and working potential remain elusive. Herein, by examining three sodium carboxylates with selective N substitution or extended conjugation structure, we exploited the correlation between structure and performance to establish substitution rules for high-capacity OEMs. Our results show that substitution position and types of functional groups are essential to create active centers for uptake/removal of Na+ and thermodynamically stabilize organic structures. Furthermore, rational host design and electrolytes modulation were performed to extend the cycle life to 500 cycles. A full cell based on the optimal 2,2’-bipyridine-4,4’-dicarboxylic acid disodium salt anode and the polyaniline cathode is demonstrated to confirm the feasibility of achieving all-organic batteries. Lastly, this work provides a valuable guideline for the design principle of high-capacity and stable OEMs for sustainable energy storage.},
doi = {10.1016/j.jpowsour.2022.231383},
journal = {Journal of Power Sources},
number = ,
volume = 533,
place = {United States},
year = {Sun Apr 03 00:00:00 EDT 2022},
month = {Sun Apr 03 00:00:00 EDT 2022}
}

Works referenced in this record:

Hexacyanoferrate‐Type Prussian Blue Analogs: Principles and Advances Toward High‐Performance Sodium and Potassium Ion Batteries
journal, May 2020

  • Zhou, Aijun; Cheng, Weijie; Wang, Wei
  • Advanced Energy Materials, Vol. 11, Issue 2
  • DOI: 10.1002/aenm.202000943

Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries
journal, March 2018


Molecular engineering of covalent organic nanosheets for high-performance sodium-ion batteries
journal, January 2020

  • Kim, Min-Sung; Lee, Minseop; Kim, Min-Jae
  • Journal of Materials Chemistry A, Vol. 8, Issue 34
  • DOI: 10.1039/D0TA06206E

Recent progress on sodium ion batteries: potential high-performance anodes
journal, January 2018

  • Li, Li; Zheng, Yang; Zhang, Shilin
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE01023D

How Many Lithium Ions Can Be Inserted onto Fused C 6 Aromatic Ring Systems?
journal, April 2012

  • Han, Xiaoyan; Qing, Guangyan; Sun, Jutang
  • Angewandte Chemie International Edition, Vol. 51, Issue 21
  • DOI: 10.1002/anie.201109187

Recent advances in developing organic electrode materials for multivalent rechargeable batteries
journal, January 2020

  • Qin, Kaiqiang; Huang, Jinghao; Holguin, Kathryn
  • Energy & Environmental Science, Vol. 13, Issue 11
  • DOI: 10.1039/D0EE02111C

Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries
journal, April 2015


Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries
journal, April 2014

  • Castillo-Martínez, Elizabeth; Carretero-González, Javier; Armand, Michel
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402402

A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures
journal, January 2019

  • Wu, Yanchao; Chen, Yuan; Tang, Mi
  • Chemical Communications, Vol. 55, Issue 73
  • DOI: 10.1039/C9CC05679C

Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries
journal, April 2020


Oxocarbon Salts for Fast Rechargeable Batteries
journal, September 2016

  • Zhao, Qing; Wang, Jianbin; Lu, Yong
  • Angewandte Chemie International Edition, Vol. 55, Issue 40
  • DOI: 10.1002/anie.201607194

High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate
journal, October 2017


Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage
journal, March 2020


Organic Thiocarboxylate Electrodes for a Room-Temperature Sodium-Ion Battery Delivering an Ultrahigh Capacity
journal, November 2017

  • Zhao, Hongyang; Wang, Jianwei; Zheng, Yuheng
  • Angewandte Chemie, Vol. 129, Issue 48
  • DOI: 10.1002/ange.201708960

Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries
journal, February 2018

  • Luo, Chao; Xu, Gui-Liang; Ji, Xiao
  • Angewandte Chemie International Edition, Vol. 57, Issue 11
  • DOI: 10.1002/anie.201713417

Sodium storage in triazine-based molecular organic electrodes: The importance of hydroxyl substituents
journal, February 2022


Azo compounds as a family of organic electrode materials for alkali-ion batteries
journal, February 2018

  • Luo, Chao; Borodin, Oleg; Ji, Xiao
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 9
  • DOI: 10.1073/pnas.1717892115

Redox‐Active Organic Compounds for Future Sustainable Energy Storage System
journal, June 2020

  • Lee, Sechan; Hong, Jihyun; Kang, Kisuk
  • Advanced Energy Materials, Vol. 10, Issue 30
  • DOI: 10.1002/aenm.202001445

Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries
journal, February 2015

  • Wang, Chengliang; Xu, Yang; Fang, Yaoguo
  • Journal of the American Chemical Society, Vol. 137, Issue 8
  • DOI: 10.1021/jacs.5b00336

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device
journal, February 2013

  • Sakaushi, Ken; Hosono, Eiji; Nickerl, Georg
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2481

A Pyrazine‐Based Polymer for Fast‐Charge Batteries
journal, December 2019

  • Mao, Minglei; Luo, Chao; Pollard, Travis P.
  • Angewandte Chemie International Edition, Vol. 58, Issue 49
  • DOI: 10.1002/anie.201910916

Organic materials for rechargeable sodium-ion batteries
journal, January 2018


Carbonyls: Powerful Organic Materials for Secondary Batteries
journal, April 2015

  • Häupler, Bernhard; Wild, Andreas; Schubert, Ulrich S.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402034

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Organic Electrode Materials for Metal Ion Batteries
journal, January 2020


Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers
journal, January 2015

  • López-Herraiz, María; Castillo-Martínez, Elizabeth; Carretero-González, Javier
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE01832C

Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries
journal, December 2016


Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries
journal, August 2020

  • Desai, Aamod V.; Morris, Russell E.; Armstrong, A. Robert
  • ChemSusChem, Vol. 13, Issue 18
  • DOI: 10.1002/cssc.202001334

An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries
journal, June 2014

  • Luo, Wei; Allen, Marshall; Raju, Vadivukarasi
  • Advanced Energy Materials, Vol. 4, Issue 15
  • DOI: 10.1002/aenm.201400554

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate
journal, November 2016

  • Wu, Shaofei; Wang, Wenxi; Li, Minchan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13318

Biologically inspired pteridine redox centres for rechargeable batteries
journal, October 2014

  • Hong, Jihyun; Lee, Minah; Lee, Byungju
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6335

A conjugated tetracarboxylate anode for stable and sustainable Na-ion batteries
journal, January 2021

  • Qin, Kaiqiang; Holguin, Kathryn; Mohammadiroudbari, Motahareh
  • Chemical Communications, Vol. 57, Issue 19
  • DOI: 10.1039/D0CC08273B

Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries
journal, January 2020


Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium‐Ion Batteries
journal, August 2020


Polymer-Based Organic Batteries
journal, August 2016


Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells
journal, January 2012

  • Abouimrane, Ali; Weng, Wei; Eltayeb, Hussameldin
  • Energy & Environmental Science, Vol. 5, Issue 11, p. 9632-9638
  • DOI: 10.1039/c2ee22864e

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries
journal, January 2021

  • Holguin, Kathryn; Mohammadiroudbari, Motahareh; Qin, Kaiqiang
  • Journal of Materials Chemistry A, Vol. 9, Issue 35
  • DOI: 10.1039/D1TA00528F

Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery
journal, May 2012

  • Zhao, Liang; Zhao, Junmei; Hu, Yong-Sheng
  • Advanced Energy Materials, Vol. 2, Issue 8
  • DOI: 10.1002/aenm.201200166