DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD

Authors:
ORCiD logo; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1878645
Grant/Contract Number:  
0000456309
Resource Type:
Published Article
Journal Name:
Nuclear Engineering and Technology
Additional Journal Information:
Journal Name: Nuclear Engineering and Technology Journal Volume: 54 Journal Issue: 11; Journal ID: ISSN 1738-5733
Publisher:
Elsevier
Country of Publication:
Korea, Republic of
Language:
English

Citation Formats

Biswal, Biswajit, Duncan, Andrew, and Sun, Zaijing. ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD. Korea, Republic of: N. p., 2022. Web. doi:10.1016/j.net.2022.07.006.
Biswal, Biswajit, Duncan, Andrew, & Sun, Zaijing. ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD. Korea, Republic of. https://doi.org/10.1016/j.net.2022.07.006
Biswal, Biswajit, Duncan, Andrew, and Sun, Zaijing. Tue . "ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD". Korea, Republic of. https://doi.org/10.1016/j.net.2022.07.006.
@article{osti_1878645,
title = {ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD},
author = {Biswal, Biswajit and Duncan, Andrew and Sun, Zaijing},
abstractNote = {},
doi = {10.1016/j.net.2022.07.006},
journal = {Nuclear Engineering and Technology},
number = 11,
volume = 54,
place = {Korea, Republic of},
year = {2022},
month = {11}
}

Works referenced in this record:

Deep learning applications and challenges in big data analytics
journal, February 2015

  • Najafabadi, Maryam M.; Villanustre, Flavio; Khoshgoftaar, Taghi M.
  • Journal of Big Data, Vol. 2, Issue 1
  • DOI: 10.1186/s40537-014-0007-7

Online Frequent Episode Mining
conference, April 2015

  • Ao, Xiang; Luo, Ping; Li, Chengkai
  • 2015 IEEE 31st International Conference on Data Engineering (ICDE)
  • DOI: 10.1109/ICDE.2015.7113342

Survey of Clustering Algorithms
journal, May 2005


Multi-Source Data Stream Online Frequent Episode Mining
journal, January 2020


Data clustering: a review
journal, September 1999

  • Jain, A. K.; Murty, M. N.; Flynn, P. J.
  • ACM Computing Surveys, Vol. 31, Issue 3, p. 264-323
  • DOI: 10.1145/331499.331504

An online learning model based on episode mining for workload prediction in cloud
journal, October 2018


Large-Scale Frequent Episode Mining from Complex Event Sequences with Hierarchies
journal, July 2019

  • Ao, Xiang; Shi, Haoran; Wang, Jin
  • ACM Transactions on Intelligent Systems and Technology, Vol. 10, Issue 4
  • DOI: 10.1145/3326163

Pvclust: an R package for assessing the uncertainty in hierarchical clustering
journal, April 2006


Power harmonic and interharmonic detection method in renewable power based on Nuttall double‐window all‐phase FFT algorithm
journal, May 2018


Machine learning for Big Data analytics in plants
journal, December 2014


Fourier could be a data scientist: From graph Fourier transform to signal processing on graphs
journal, July 2019


A survey towards an integration of big data analytics to big insights for value-creation
journal, September 2018


Enhanced learning classifier to locate data in cloud data centres
journal, January 2015

  • Biswal, Biswajit; Shetty, Sachin; Rogers, Tamara
  • International Journal of Metaheuristics, Vol. 4, Issue 2
  • DOI: 10.1504/IJMHEUR.2015.074248

Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification
journal, February 2018