DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography

Abstract

Two experiments at the OMEGA Laser System used oblique proton radiography to measure magnetic fields in cylindrical implosions with and without an applied axial magnetic field. Although the goal of both experiments was to measure the magnitude of the compressed axial magnetic field in the core of the implosion, this field was obfuscated by two features in the coronal plasma produced by the compression beams: an azimuthal self-generated magnetic field and small length scale, high-amplitude structures attributed to collisionless effects. In order to understand these features, synthetic radiographs are generated using fields produced by 3D HYDRA simulations. These synthetic radiographs reproduce the features of the experimental radiographs with the exception of the small-scale structures. A direct inversion algorithm is successfully applied to a synthetic radiograph but is only partially able to invert the experimental radiographs in part because some protons are blocked by the field coils. The origins of the radiograph features and their dependence on various experimental parameters are explored. Furthermore, the results of this analysis should inform future measurements of compressed axial magnetic fields in cylindrical implosions.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3];  [3]
  1. University of Rochester, NY (United States)
  2. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  3. Massachusetts Institute of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1885760
Alternate Identifier(s):
OSTI ID: 1876467; OSTI ID: 1973192
Report Number(s):
LLNL-JRNL-846892
Journal ID: ISSN 1070-664X; 2022-113; 1735; 2697; TRN: US2309648
Grant/Contract Number:  
SC0020431; NA0003856; AR0000568; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 29; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; magnetic fields; magnetic equipment; laser ablation; radiography; magnetohydrodynamics; electromagnetism

Citation Formats

Heuer, P. V., Leal, L. S., Davies, J. R., Hansen, E. C., Barnak, D. H., Peebles, J. L., García-Rubio, F., Pollock, B., Moody, J., Birkel, A., and Seguin, F. H. Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography. United States: N. p., 2022. Web. doi:10.1063/5.0092652.
Heuer, P. V., Leal, L. S., Davies, J. R., Hansen, E. C., Barnak, D. H., Peebles, J. L., García-Rubio, F., Pollock, B., Moody, J., Birkel, A., & Seguin, F. H. Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography. United States. https://doi.org/10.1063/5.0092652
Heuer, P. V., Leal, L. S., Davies, J. R., Hansen, E. C., Barnak, D. H., Peebles, J. L., García-Rubio, F., Pollock, B., Moody, J., Birkel, A., and Seguin, F. H. Mon . "Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography". United States. https://doi.org/10.1063/5.0092652. https://www.osti.gov/servlets/purl/1885760.
@article{osti_1885760,
title = {Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography},
author = {Heuer, P. V. and Leal, L. S. and Davies, J. R. and Hansen, E. C. and Barnak, D. H. and Peebles, J. L. and García-Rubio, F. and Pollock, B. and Moody, J. and Birkel, A. and Seguin, F. H.},
abstractNote = {Two experiments at the OMEGA Laser System used oblique proton radiography to measure magnetic fields in cylindrical implosions with and without an applied axial magnetic field. Although the goal of both experiments was to measure the magnitude of the compressed axial magnetic field in the core of the implosion, this field was obfuscated by two features in the coronal plasma produced by the compression beams: an azimuthal self-generated magnetic field and small length scale, high-amplitude structures attributed to collisionless effects. In order to understand these features, synthetic radiographs are generated using fields produced by 3D HYDRA simulations. These synthetic radiographs reproduce the features of the experimental radiographs with the exception of the small-scale structures. A direct inversion algorithm is successfully applied to a synthetic radiograph but is only partially able to invert the experimental radiographs in part because some protons are blocked by the field coils. The origins of the radiograph features and their dependence on various experimental parameters are explored. Furthermore, the results of this analysis should inform future measurements of compressed axial magnetic fields in cylindrical implosions.},
doi = {10.1063/5.0092652},
journal = {Physics of Plasmas},
number = 7,
volume = 29,
place = {United States},
year = {Mon Jul 18 00:00:00 EDT 2022},
month = {Mon Jul 18 00:00:00 EDT 2022}
}

Works referenced in this record:

Measuring magnetic flux suppression in high-power laser–plasma interactions
journal, January 2022

  • Campbell, P. T.; Walsh, C. A.; Russell, B. K.
  • Physics of Plasmas, Vol. 29, Issue 1
  • DOI: 10.1063/5.0062717

Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

Compressing magnetic fields with high-energy lasers
journal, May 2010

  • Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3416557

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Using high-intensity laser-generated energetic protons to radiograph directly driven implosions
journal, January 2012

  • Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.
  • Review of Scientific Instruments, Vol. 83, Issue 1
  • DOI: 10.1063/1.3680110

Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
journal, May 2017

  • Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983140

The inadequacy of a magnetohydrodynamic approach to the Biermann battery
journal, December 2020

  • Ridgers, C. P.; Arran, C.; Bissell, J. J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379, Issue 2189
  • DOI: 10.1098/rsta.2020.0017

Proton imaging of stochastic magnetic fields
journal, December 2017


Effect of laser preheat in magnetized liner inertial fusion at OMEGA
journal, April 2022

  • Leal, L. S.; Maximov, A. V.; Hansen, E. C.
  • Physics of Plasmas, Vol. 29, Issue 4
  • DOI: 10.1063/5.0079577

Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions
journal, June 2020

  • Hansen, E. C.; Davies, J. R.; Barnak, D. H.
  • Physics of Plasmas, Vol. 27, Issue 6
  • DOI: 10.1063/1.5144447

Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography
journal, November 2019


Time evolution of filamentation and self-generated fields in the coronae of directly driven inertial-confinement fusion capsules
journal, January 2012

  • Séguin, F. H.; Li, C. K.; Manuel, M. J. -E.
  • Physics of Plasmas, Vol. 19, Issue 1
  • DOI: 10.1063/1.3671908

Retrieving fields from proton radiography without source profiles
journal, September 2019


Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas
journal, January 1981


Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Optimization of laser-driven cylindrical implosions on the OMEGA laser
journal, December 2018

  • Hansen, E. C.; Barnak, D. H.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5055776

Magnetic flux conservation in an imploding plasma
journal, January 2018


Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas
journal, May 2015


Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas
journal, November 2009


Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems
journal, January 2022

  • Malko, Sophia; Johnson, Courtney; Schaeffer, Derek B.
  • Applied Optics, Vol. 61, Issue 6
  • DOI: 10.1364/AO.448294

Invited Article: Relation between electric and magnetic field structures and their proton-beam images
journal, October 2012

  • Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4750234

Self-generated magnetic fields in direct-drive implosion experiments
journal, June 2014

  • Igumenshchev, I. V.; Zylstra, A. B.; Li, C. K.
  • Physics of Plasmas, Vol. 21, Issue 6
  • DOI: 10.1063/1.4883226

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography
journal, September 2006


Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion
journal, February 2019

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5082960

Proton deflectometry with in situ x-ray reference for absolute measurement of electromagnetic fields in high-energy-density plasmas
journal, February 2022

  • Johnson, C. L.; Malko, S.; Fox, W.
  • Review of Scientific Instruments, Vol. 93, Issue 2
  • DOI: 10.1063/5.0064263

Quantitative shadowgraphy and proton radiography for large intensity modulations
journal, February 2017


Effects of magnetization on fusion product trapping and secondary neutron spectraa)
journal, May 2015

  • Knapp, P. F.; Schmit, P. F.; Hansen, S. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920948

Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser
journal, April 2018

  • Hansen, E. C.; Barnak, D. H.; Betti, R.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab73f

Proton Radiography of Inertial Fusion Implosions
journal, February 2008


Suppression of the Biermann Battery and Stabilization of the Thermomagnetic Instability in Laser Fusion Conditions
journal, February 2020


Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets
journal, January 2022

  • Walsh, C. A.; Florido, R.; Bailly-Grandvaux, M.
  • Plasma Physics and Controlled Fusion, Vol. 64, Issue 2
  • DOI: 10.1088/1361-6587/ac3f25

Laser-driven magnetized liner inertial fusion
journal, June 2017

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4984779

Topology of Megagauss Magnetic Fields and of Heat-Carrying Electrons Produced in a High-Power Laser-Solid Interaction
journal, December 2014


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Magnetic Signatures of Radiation-Driven Double Ablation Fronts
journal, September 2020