DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insensitivity of a turbulent laser-plasma dynamo to initial conditions

Abstract

It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamicsmore » rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [2]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [8];  [6]; ORCiD logo [9]; ORCiD logo [6]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11];  [6]; ORCiD logo [12]; ORCiD logo [2];  [13] more »; ORCiD logo [14] « less
  1. Univ. of Oxford (United Kingdom); Univ. of Princeton, NJ (United States)
  2. Univ. of Oxford (United Kingdom)
  3. Univ. of Oxford (United Kingdom); Univ. of Rochester, NY (United States)
  4. Queens Univ., Belfast (United Kingdom)
  5. Rutherford Appleton Lab., Didcot (United Kingdom); Univ. of Strathclyde, Glasgow (United Kingdom)
  6. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  7. Univ. of Rochester, NY (United States)
  8. Univ. of Princeton, NJ (United States)
  9. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  10. Max-Planck-Inst. für Kernphysik, Heidelberg (Germany)
  11. UNIST, Ulsan (South Korea)
  12. Univ. of Nevada, Reno, NV (United States)
  13. Univ. of Chicago, IL (United States)
  14. Univ. of Oxford (United Kingdom); Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES); National Science Foundation (NSF); National Research Foundation of Korea (NRF)
OSTI Identifier:
1875467
Alternate Identifier(s):
OSTI ID: 1873918; OSTI ID: 1890808
Report Number(s):
LLNL-JRNL-840200
Journal ID: ISSN 2468-2047; 256973; 247039; PHY-1619573; PHY-2033925; PHY-2045718; 2016R1A5A1013277; 2020R1A2C2102800; EP/M022331/1; EP/N014472/1; EP/R034737/1; TRN: US2307212
Grant/Contract Number:  
NA0003856; B591485; B632670; NA0002724; NA0003605; NA0003934; SC0016566; NA0003868; PHY-1619573; PHY-2033925; PHY-2045718; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Matter and Radiation at Extremes
Additional Journal Information:
Journal Volume: 7; Journal Issue: 4; Journal ID: ISSN 2468-2047
Publisher:
China Academy of Engineering Physics (CAEP)/AIP Publishing
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Thomson scattering; Stochastic processes; Plasma dynamics; Turbulent flows; Radiography; Lasers; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Bott, A. F. A., Chen, L., Tzeferacos, P., Palmer, C. A. J., Bell, A. R., Bingham, R., Birkel, A., Froula, D. H., Katz, J., Kunz, M. W., Li, C. -K., Park, H-S, Petrasso, R., Ross, J. S., Reville, B., Ryu, D., Séguin, F. H., White, T. G., Schekochihin, A. A., Lamb, D. Q., and Gregori, G. Insensitivity of a turbulent laser-plasma dynamo to initial conditions. United States: N. p., 2022. Web. doi:10.1063/5.0084345.
Bott, A. F. A., Chen, L., Tzeferacos, P., Palmer, C. A. J., Bell, A. R., Bingham, R., Birkel, A., Froula, D. H., Katz, J., Kunz, M. W., Li, C. -K., Park, H-S, Petrasso, R., Ross, J. S., Reville, B., Ryu, D., Séguin, F. H., White, T. G., Schekochihin, A. A., Lamb, D. Q., & Gregori, G. Insensitivity of a turbulent laser-plasma dynamo to initial conditions. United States. https://doi.org/10.1063/5.0084345
Bott, A. F. A., Chen, L., Tzeferacos, P., Palmer, C. A. J., Bell, A. R., Bingham, R., Birkel, A., Froula, D. H., Katz, J., Kunz, M. W., Li, C. -K., Park, H-S, Petrasso, R., Ross, J. S., Reville, B., Ryu, D., Séguin, F. H., White, T. G., Schekochihin, A. A., Lamb, D. Q., and Gregori, G. Mon . "Insensitivity of a turbulent laser-plasma dynamo to initial conditions". United States. https://doi.org/10.1063/5.0084345. https://www.osti.gov/servlets/purl/1875467.
@article{osti_1875467,
title = {Insensitivity of a turbulent laser-plasma dynamo to initial conditions},
author = {Bott, A. F. A. and Chen, L. and Tzeferacos, P. and Palmer, C. A. J. and Bell, A. R. and Bingham, R. and Birkel, A. and Froula, D. H. and Katz, J. and Kunz, M. W. and Li, C. -K. and Park, H-S and Petrasso, R. and Ross, J. S. and Reville, B. and Ryu, D. and Séguin, F. H. and White, T. G. and Schekochihin, A. A. and Lamb, D. Q. and Gregori, G.},
abstractNote = {It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.},
doi = {10.1063/5.0084345},
journal = {Matter and Radiation at Extremes},
number = 4,
volume = 7,
place = {United States},
year = {Mon Jun 27 00:00:00 EDT 2022},
month = {Mon Jun 27 00:00:00 EDT 2022}
}

Works referenced in this record:

Saturation mechanism of the fluctuation dynamo at Pr M     1
journal, April 2020


Cosmic Radiation and Cosmic Magnetic Fields. II. Origin of Cosmic Magnetic Fields
journal, June 1951


Universal Nonlinear Small-Scale Dynamo
journal, January 2012


Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
journal, February 2018


Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA
journal, June 2012

  • Manuel, M. J. -E.; Zylstra, A. B.; Rinderknecht, H. G.
  • Review of Scientific Instruments, Vol. 83, Issue 6
  • DOI: 10.1063/1.4730336

The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field
journal, September 1992

  • Kulsrud, Russell M.; Anderson, Stephen W.
  • The Astrophysical Journal, Vol. 396
  • DOI: 10.1086/171743

Transport of High-energy Charged Particles through Spatially Intermittent Turbulent Magnetic Fields
journal, April 2020

  • Chen, L. E.; Bott, A. F. A.; Tzeferacos, P.
  • The Astrophysical Journal, Vol. 892, Issue 2
  • DOI: 10.3847/1538-4357/ab7a19

Magnetic fields in spiral galaxies
journal, December 2015


Supersonic plasma turbulence in the laboratory
journal, April 2019


Initial performance results of the OMEGA laser system
journal, January 1997


Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
journal, August 2007


Time-resolved turbulent dynamo in a laser plasma
journal, March 2021

  • Bott, Archie F. A.; Tzeferacos, Petros; Chen, Laura
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 11
  • DOI: 10.1073/pnas.2015729118

Saturation mechanism of the fluctuation dynamo in supersonic turbulent plasmas
journal, October 2021


Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves
journal, January 2012

  • Gregori, G.; Ravasio, A.; Murphy, C. D.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10747

X-ray surface brightness and gas density fluctuations in the Coma cluster: X-ray surface brightness fluctuations in the Coma cluster
journal, January 2012


Kinematic dynamo problem in a linear velocity field
journal, July 1984


Magnetic Fields in Galaxy Clusters and in the Large-Scale Structure of the Universe
journal, December 2018


Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe
journal, May 2008


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves
journal, June 2014

  • Meinecke, J.; Doyle, H. W.; Miniati, F.
  • Nature Physics, Vol. 10, Issue 7
  • DOI: 10.1038/nphys2978

Simulations of nonhelical hydromagnetic turbulence
journal, July 2004


Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo
journal, April 2017

  • Tzeferacos, P.; Rigby, A.; Bott, A.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978628

Development and characterization of a pair of 30–40 ps x‐ray framing cameras
journal, January 1995

  • Bradley, D. K.; Bell, P. M.; Landen, O. L.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146268

Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas
journal, April 2009

  • Gotchev, O. V.; Knauer, J. P.; Chang, P. Y.
  • Review of Scientific Instruments, Vol. 80, Issue 4
  • DOI: 10.1063/1.3115983

Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas
journal, March 2022

  • Meinecke, Jena; Tzeferacos, Petros; Ross, James S.
  • Science Advances, Vol. 8, Issue 10
  • DOI: 10.1126/sciadv.abj6799

Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas
journal, June 2015

  • Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1502079112

Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles
journal, January 2021


Structure of homogeneous nonhelical magnetohydrodynamic turbulence
journal, September 1996

  • Miller, R. S.; Mashayek, F.; Adumitroaie, V.
  • Physics of Plasmas, Vol. 3, Issue 9
  • DOI: 10.1063/1.871599

Statistical properties of MHD turbulence and turbulent dynamo
journal, March 1991

  • Kida, Shigeo; Yanase, Shinichiro; Mizushima, Jiro
  • Physics of Fluids A: Fluid Dynamics, Vol. 3, Issue 3
  • DOI: 10.1063/1.858102

Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas
journal, June 2019


Magnetic Fields in Clusters of Galaxies
journal, September 2004

  • Govoni, Federica; Feretti, Luigina
  • International Journal of Modern Physics D, Vol. 13, Issue 08
  • DOI: 10.1142/s0218271804005080

Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium
journal, January 2007


Simulations of the Small‐Scale Turbulent Dynamo
journal, September 2004

  • Schekochihin, Alexander A.; Cowley, Steven C.; Taylor, Samuel F.
  • The Astrophysical Journal, Vol. 612, Issue 1
  • DOI: 10.1086/422547

Inefficient Magnetic-Field Amplification in Supersonic Laser-Plasma Turbulence
journal, October 2021


Magnetic-field generation in laser fusion and hot-electron transport
journal, August 1986

  • Haines, M. G.
  • Canadian Journal of Physics, Vol. 64, Issue 8
  • DOI: 10.1139/p86-160

Helical and Nonhelical Turbulent Dynamos
journal, October 1981


Retrieving fields from proton radiography without source profiles
journal, September 2019


Spectrometry of charged particles from inertial-confinement-fusion plasmas
journal, February 2003

  • Séguin, F. H.; Frenje, J. A.; Li, C. K.
  • Review of Scientific Instruments, Vol. 74, Issue 2
  • DOI: 10.1063/1.1518141

The Protogalactic Origin for Cosmic Magnetic Fields
journal, May 1997

  • Kulsrud, Russell M.; Cen, Renyue; Ostriker, Jeremiah P.
  • The Astrophysical Journal, Vol. 480, Issue 2
  • DOI: 10.1086/303987

Characteristic Lengths of Magnetic Field in Magnetohydrodynamic Turbulence
journal, October 2009


Fluctuation Dynamo at Finite Correlation Times and the Kazantsev Spectrum
journal, August 2014


Magnetic Field Saturation in the Riga Dynamo Experiment
journal, April 2001


Vorticity, Shocks, and Magnetic Fields in Subsonic, Icm-Like Turbulence
journal, September 2015


Invited Article: Relation between electric and magnetic field structures and their proton-beam images
journal, October 2012

  • Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4750234

The Relation Between gas Density and Velocity Power Spectra in Galaxy Clusters: Qualitative Treatment and Cosmological Simulations
journal, May 2014


High‐speed gated x‐ray imagers (invited)
journal, August 1988

  • Kilkenny, J. D.; Bell, P.; Hanks, R.
  • Review of Scientific Instruments, Vol. 59, Issue 8
  • DOI: 10.1063/1.1140115

Laser light scattering in laboratory plasmas
journal, January 1969


The Generation of Magnetic Fields through Driven Turbulence
journal, July 2000

  • Cho, Jungyeon; Vishniac, Ethan T.
  • The Astrophysical Journal, Vol. 538, Issue 1
  • DOI: 10.1086/309127

Cluster Magnetic Fields
journal, September 2002


Evolution of the Design and Fabrication of Astrophysics Targets for Turbulent Dynamo (TDYNO) Experiments on OMEGA
journal, December 2017


Origin of Magnetic Fields in Astrophysics (Turbulent "Dynamo" Mechanisms)
journal, February 1972


Field reconstruction from proton radiography of intense laser driven magnetic reconnection
journal, August 2019

  • Palmer, C. A. J.; Campbell, P. T.; Ma, Y.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5092733

Implementation of a Faraday rotation diagnostic at the OMEGA laser facility
journal, January 2018

  • Rigby, A.; Katz, J.; Bott, A. F. A.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.42

Seed magnetic fields in turbulent small-scale dynamos
journal, September 2020

  • Seta, Amit; Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 499, Issue 2
  • DOI: 10.1093/mnras/staa2978

Efficient Highly Subsonic Turbulent Dynamo and Growth of Primordial Magnetic Fields
journal, March 2021

  • Achikanath Chirakkara, Radhika; Federrath, Christoph; Trivedi, Pranjal
  • Physical Review Letters, Vol. 126, Issue 9
  • DOI: 10.1103/PhysRevLett.126.091103