DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of the thermal conductivity of molten LiF-NaF-KF with experiments, theory, and equilibrium molecular dynamics

Abstract

Molten salts are being proposed for numerous advanced energy applications, including advanced nuclear reactors, concentrating solar power plants, thermal energy storage, and fusion reactors. Accurate knowledge of the thermophysical properties of molten salts directly impact the performance of these energy systems and are essential for design and safety analyses. Thermal conductivity data for fluoride molten salts and mixtures are especially lacking. In this work, experimental measurements of thermal conductivity using the steady-state variable gap technique were performed on eutectic LiF-NaF-KF from 834 to 1195 K. The experiment accounts for radiative, convective, and conductive heat losses. In addition, theoretical and molecular dynamics models are used, from 750 K up to 1300 K, to estimate the thermal conductivity for comparison with the experimental results. The results of experiments show a weak negative deviation of thermal conductivity with temperature, unlike previous experimental results in the literature. The measured thermal conductivity magnitudes agree with the theoretical and molecular dynamics predictions, aside from the data above 1100 K, where heat losses and radiative errors are the most significant, having a 16% maximum deviation from theory. These experimental results provide new thermal conductivity data for the LiF-NaF-KF system and further validation of the predictive models. Themore » theoretical model was used to map the composition and temperature dependent thermal conductivity of LiF-NaF-KF and the mapping’s deviation from a linear additivity estimation of thermal conductivity. Additionally, this mapping showed the highest deviations from linearity for KF-LiF rich mixtures and increasing deviation with temperature. Notably, the deviation from linearity near the LiF-NaF-KF eutectic composition was around 25%.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [3]; ORCiD logo [3]
  1. The Ohio State Univ., Columbus, OH (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Polytechnique Montréal, QC (Canada)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE); Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1875361
Grant/Contract Number:  
AC05-00OR22725; RGPIN-2021-03279
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Molecular Liquids
Additional Journal Information:
Journal Volume: 361; Journal Issue: n/a; Journal ID: ISSN 0167-7322
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; FLiNaK; Variable gap technique; Thermal conductivity; Radiative thermal transport; Molecular dynamics simulations; Molten salts

Citation Formats

Gallagher, Ryan C., Birri, Anthony, Russell, Nick G., Phan, Anh-Thu, and Gheribi, Aïmen E. Investigation of the thermal conductivity of molten LiF-NaF-KF with experiments, theory, and equilibrium molecular dynamics. United States: N. p., 2022. Web. doi:10.1016/j.molliq.2022.119151.
Gallagher, Ryan C., Birri, Anthony, Russell, Nick G., Phan, Anh-Thu, & Gheribi, Aïmen E. Investigation of the thermal conductivity of molten LiF-NaF-KF with experiments, theory, and equilibrium molecular dynamics. United States. https://doi.org/10.1016/j.molliq.2022.119151
Gallagher, Ryan C., Birri, Anthony, Russell, Nick G., Phan, Anh-Thu, and Gheribi, Aïmen E. Fri . "Investigation of the thermal conductivity of molten LiF-NaF-KF with experiments, theory, and equilibrium molecular dynamics". United States. https://doi.org/10.1016/j.molliq.2022.119151. https://www.osti.gov/servlets/purl/1875361.
@article{osti_1875361,
title = {Investigation of the thermal conductivity of molten LiF-NaF-KF with experiments, theory, and equilibrium molecular dynamics},
author = {Gallagher, Ryan C. and Birri, Anthony and Russell, Nick G. and Phan, Anh-Thu and Gheribi, Aïmen E.},
abstractNote = {Molten salts are being proposed for numerous advanced energy applications, including advanced nuclear reactors, concentrating solar power plants, thermal energy storage, and fusion reactors. Accurate knowledge of the thermophysical properties of molten salts directly impact the performance of these energy systems and are essential for design and safety analyses. Thermal conductivity data for fluoride molten salts and mixtures are especially lacking. In this work, experimental measurements of thermal conductivity using the steady-state variable gap technique were performed on eutectic LiF-NaF-KF from 834 to 1195 K. The experiment accounts for radiative, convective, and conductive heat losses. In addition, theoretical and molecular dynamics models are used, from 750 K up to 1300 K, to estimate the thermal conductivity for comparison with the experimental results. The results of experiments show a weak negative deviation of thermal conductivity with temperature, unlike previous experimental results in the literature. The measured thermal conductivity magnitudes agree with the theoretical and molecular dynamics predictions, aside from the data above 1100 K, where heat losses and radiative errors are the most significant, having a 16% maximum deviation from theory. These experimental results provide new thermal conductivity data for the LiF-NaF-KF system and further validation of the predictive models. The theoretical model was used to map the composition and temperature dependent thermal conductivity of LiF-NaF-KF and the mapping’s deviation from a linear additivity estimation of thermal conductivity. Additionally, this mapping showed the highest deviations from linearity for KF-LiF rich mixtures and increasing deviation with temperature. Notably, the deviation from linearity near the LiF-NaF-KF eutectic composition was around 25%.},
doi = {10.1016/j.molliq.2022.119151},
journal = {Journal of Molecular Liquids},
number = n/a,
volume = 361,
place = {United States},
year = {Fri Apr 15 00:00:00 EDT 2022},
month = {Fri Apr 15 00:00:00 EDT 2022}
}

Works referenced in this record:

Economics and finance of Molten Salt Reactors
journal, November 2020


Preparation of high-purity molten FLiNaK salt by the hydrofluorination process
journal, May 2017


Corrosion behaviour of Ni-based superalloys in molten FLiNaK salts
journal, September 2018

  • Patel, Niketan S.; Pavlík, Viliam; Kubíková, Blanka
  • Corrosion Engineering, Science and Technology, Vol. 54, Issue 1
  • DOI: 10.1080/1478422X.2018.1525829

Hemispherical total emissivity of Hastelloy N with different surface conditions
journal, July 2012


Concentrating Solar Power Gen3 Demonstration Roadmap
report, January 2017


Molten salts database for energy applications
journal, November 2013

  • Serrano-López, R.; Fradera, J.; Cuesta-López, S.
  • Chemical Engineering and Processing: Process Intensification, Vol. 73
  • DOI: 10.1016/j.cep.2013.07.008

Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. I. Molten LiCl, NaCl, KCl, RbCl, and CsCl
journal, July 1992

  • Nagasaka, Y.; Nakazawa, N.; Nagashima, A.
  • International Journal of Thermophysics, Vol. 13, Issue 4
  • DOI: 10.1007/BF00501941

Elimination of the radiant component of measured liquid thermal conductivities
journal, June 1983

  • Braun, R.; Fischer, S.; Schaber, A.
  • Wärme- und Stoffübertragung, Vol. 17, Issue 2
  • DOI: 10.1007/BF01007228

Formulation of Temperature-Dependent Thermal Conductivity of NaF, β-Na 3 AlF 6 , Na 5 Al 3 F 14 , and Molten Na 3 AlF 6 Supported by Equilibrium Molecular Dynamics and Density Functional Theory
journal, September 2016

  • Gheribi, Aïmen E.; Salanne, Mathieu; Chartrand, Patrice
  • The Journal of Physical Chemistry C, Vol. 120, Issue 40
  • DOI: 10.1021/acs.jpcc.6b07959

Corresponding states correlation for the thermal conductivity of molten alkali halides
journal, July 1993

  • Nagasaka, Y.; Nagashima, A.
  • International Journal of Thermophysics, Vol. 14, Issue 4
  • DOI: 10.1007/BF00502115

Electrochemical behavior of dysprosium and lanthanum in molten LiF-NaF-KF (Flinak) salt
journal, October 2018


Optical properties of high temperature molten salt mixtures for volumetrically absorbing solar thermal receiver applications
journal, September 2017


The infrared absorption coefficient of alkali halides
journal, March 1980

  • Li, H. H.
  • International Journal of Thermophysics, Vol. 1, Issue 1
  • DOI: 10.1007/BF00506275

Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides
journal, January 2010


The thermal conductivity of liquids—IV
journal, August 1967


Error estimates on averages of correlated data
journal, July 1989

  • Flyvbjerg, H.; Petersen, H. G.
  • The Journal of Chemical Physics, Vol. 91, Issue 1
  • DOI: 10.1063/1.457480

Concentrating Solar Power
journal, August 2015


Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications
journal, August 2018


Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review
journal, July 2019


The Nose–Hoover thermostat
journal, October 1985

  • Evans, D. J.; Holian, B. L.
  • The Journal of Chemical Physics, Vol. 83, Issue 8
  • DOI: 10.1063/1.449071

A First-Principles Description of Liquid BeF2 and Its Mixtures with LiF:  1. Potential Development and Pure BeF2
journal, May 2006

  • Heaton, Robert J.; Brookes, Richard; Madden, Paul A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 23
  • DOI: 10.1021/jp061000+

A guarded parallel‐plate instrument for measuring the thermal conductivity of fluids in the critical region
journal, November 1989

  • Mostert, R.; van den Berg, H. R.; van der Gulik, P. S.
  • Review of Scientific Instruments, Vol. 60, Issue 11
  • DOI: 10.1063/1.1140494

Heat-transport properties of molten fluorides: Determination from first-principles
journal, January 2009


A new approach for coupled modelling of the structural and thermo-physical properties of molten salts. Case of a polymeric liquid LiF-BeF2
journal, February 2020


Thermodynamic properties and phase diagrams of fluoride salts for nuclear applications
journal, January 2009


An overview of thermal energy storage systems
journal, February 2018


Roadmap for thermal property measurements of Molten Salt Reactor systems
report, March 2021


Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments
journal, June 2013


Reactor plasma facing component designs based on liquid metal concepts supported in porous systems
journal, November 2016


Thermal Conductivity of Molten Alkali Metal Fluorides (LiF, NaF, KF) and Their Mixtures
journal, January 2014

  • Ishii, Yoshiki; Sato, Keisuke; Salanne, Mathieu
  • The Journal of Physical Chemistry B, Vol. 118, Issue 12
  • DOI: 10.1021/jp411781n

Electronic polarizability of a fluoride ion estimated by refractive indexes and molar volumes of molten eutectic LiF–NaF–KF
journal, October 1995

  • Iwadate, Yasuhiko; Fukushima, Kazuko
  • The Journal of Chemical Physics, Vol. 103, Issue 14
  • DOI: 10.1063/1.470411

Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques
journal, September 2013


The fluctuation-dissipation theorem
journal, January 1966


‘Covalent’ effects in ‘ionic’ systems
journal, January 1996


Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies
journal, January 2016


Influence of Thermal Contact Resistance on Thermal Conductivity Measurement with a High-Temperature Guarded Hot Plate Apparatus
journal, January 2020

  • Yao, Kai; Liu, Yunchuan; Zhou, Yanping
  • International Journal of Thermophysics, Vol. 41, Issue 2
  • DOI: 10.1007/s10765-019-2595-0

Selection of materials for high temperature latent heat energy storage
journal, December 2012


Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations
journal, February 2016

  • Gheribi, Aïmen E.; Chartrand, Patrice
  • The Journal of Chemical Physics, Vol. 144, Issue 8
  • DOI: 10.1063/1.4942197

Importance of Accurate Data on Viscosity and Thermal Conductivity in Molten Salts Applications
journal, May 2003

  • Nunes, Valentim M. B.; Lourenço, Maria J. V.; Santos, Fernando J. V.
  • Journal of Chemical & Engineering Data, Vol. 48, Issue 3
  • DOI: 10.1021/je020160l

Reprint of: FactSage thermochemical software and databases, 2010–2016
journal, December 2016


Radiant Transfer of Heat in Molten Inorganic Compounds at High Temperatures.
journal, April 1962

  • Ewing, C. T.; Spann, J. R.; Miller, R. R.
  • Journal of Chemical & Engineering Data, Vol. 7, Issue 2
  • DOI: 10.1021/je60013a028

High-temperature phase change materials for thermal energy storage
journal, April 2010


Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. III. molten NaI, KI, RbI, and CsI
journal, September 1992

  • Nakazawa, N.; Nagasaka, Y.; Nagashima, A.
  • International Journal of Thermophysics, Vol. 13, Issue 5
  • DOI: 10.1007/BF00503905

Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. II. Molten NaBr, KBr, RbBr, and CsBr
journal, September 1992

  • Nakazawa, N.; Nagasaka, Y.; Nagashima, A.
  • International Journal of Thermophysics, Vol. 13, Issue 5
  • DOI: 10.1007/BF00503904

Batch-Scale Hydrofluorination of Li27BeF4 to Support Molten Salt Reactor Development
journal, September 2015

  • Kelleher, Brian C.; Dolan, Kieran P.; Brooks, Paul
  • Journal of Nuclear Engineering and Radiation Science, Vol. 1, Issue 4
  • DOI: 10.1115/1.4030963

Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot‐wire method
journal, February 1981

  • Nagasaka, Y.; Nagashima, A.
  • Review of Scientific Instruments, Vol. 52, Issue 2
  • DOI: 10.1063/1.1136577

Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics
journal, March 2015

  • Gheribi, Aïmen E.; Salanne, Mathieu; Chartrand, Patrice
  • The Journal of Chemical Physics, Vol. 142, Issue 12
  • DOI: 10.1063/1.4915524

The molten salt reactor (MSR) in generation IV: Overview and perspectives
journal, November 2014


Reference Correlations for the Thermal Conductivity of 13 Inorganic Molten Salts
journal, September 2018

  • Chliatzou, Ch. D.; Assael, M. J.; Antoniadis, K. D.
  • Journal of Physical and Chemical Reference Data, Vol. 47, Issue 3
  • DOI: 10.1063/1.5052343

Thermal conductivity of molten alkali halides and their mixtures
journal, July 1987


Radiation Heat Transfer in the Molten Salt FLiNaK
journal, October 2016

  • Chaleff, Ethan S.; Blue, Thomas; Sabharwall, Piyush
  • Nuclear Technology, Vol. 196, Issue 1
  • DOI: 10.13182/NT16-52

Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
report, March 2010

  • Sohal, Manohar S.; Ebner, Matthias A.; Sabharwall, Piyush
  • DOI: 10.2172/980801

Ab-Initio Calculation of Spectral Absorption Coefficients in Molten Fluoride Salts with Metal Impurities
journal, June 2018


Materials corrosion in molten LiF–NaF–KF salt
journal, January 2009


A rough hard-sphere model for the thermal conductivity of molten salts
journal, September 1992

  • DiGuilio, R. M.; Teja, A. S.
  • International Journal of Thermophysics, Vol. 13, Issue 5
  • DOI: 10.1007/BF00503912

Density and viscosity of the (LiFNaFKF)eutKBD4B2O3 melts
journal, January 2003


Measurement of the thermal conductivity of KNO3-NaNO3 mixtures using a transient hot-wire method with a liquid metal in a capillary probe
journal, March 1982

  • Omotani, T.; Nagasaka, Y.; Nagashima, A.
  • International Journal of Thermophysics, Vol. 3, Issue 1
  • DOI: 10.1007/BF00503955

Review of thermophysical property methods applied to fueled and un-fueled molten salts
journal, October 2020


Design and performance of a molten fluoride salt-compatible optical thermophysical property measurement system
journal, June 2021

  • Robertson, Sean G.; Short, Michael P.
  • Review of Scientific Instruments, Vol. 92, Issue 6
  • DOI: 10.1063/5.0049727

Recommended values for the thermal conductivity of molten salts between the melting and boiling points
journal, July 2014

  • Gheribi, Aïmen E.; Torres, Jesus A.; Chartrand, Patrice
  • Solar Energy Materials and Solar Cells, Vol. 126
  • DOI: 10.1016/j.solmat.2014.03.028

Total Hemispherical Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Hastelloy X
journal, October 2010

  • Maynard, Raymond K.; Ghosh, Tushar K.; Tompson, Robert V.
  • Nuclear Technology, Vol. 172, Issue 1
  • DOI: 10.13182/NT10-6

Constant pressure molecular dynamics algorithms
journal, September 1994

  • Martyna, Glenn J.; Tobias, Douglas J.; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.467468

Fluoride salt coolant properties for nuclear reactor applications: A review
journal, November 2017


The Status of the US High-Temperature Gas Reactors
journal, March 2016


A new guarded parallel-plate instrument for the measurement of the thermal conductivity of fluids and solids
journal, March 2013


Present status of liquid metal research for a fusion reactor
journal, October 2015


Thermal conductivity of high temperature fluoride molten salt determined by laser flash technique
journal, November 2015